133. Известно, что ДАВС « ДА,В,С, причём стороне AB co- ответствует сторона A,B, а стороне BC — сторона В,С, (рис. 62). Найдите неизвестные стороны этих треуголь- ников (размеры сторон даны в сантиметрах). Рис. 62
1. У ромба АВСD все стороны равны. Значит каждая сторона = 60 : 4 = 15(см) Меньшая диагональ ромба AC делит его на 2 равносторонних треугольника, т.к. АВ=ВС. Угол В=60 градусов, значит углы при основании треугольника АВС =60 градусов каждый (180-60) : 2 =60. Значит треугольник АВС - равносторонний. От сюда следует, что АС=АВ=ВС=15 см 2. В параллелограмме АВСD биссектриса АЕ делит ВС на отрезки ВЕ=7см и ЕС=5см. BC=AD=ВЕ+ЕС=7+5=12(cm) ВС=AD=12см Треугольник ABC - равнобедренный, т.к. угол ЕАD=углу АЕВ (накрест лежащие углы при параллельных прямых), а угол ВАЕ = углу АЕВ. Значит АВ=7см и DC=7см. Периметр ABCD=12+12+7+7= 38(см) 3. Треугольник ABC - равнобедренный, т.к. угол BAC = углу АМВ (накрест лежащие углы при параллельных прямых). Значит АВ=ВМ, АВ=СD=9дм, ВМ=9 дм. АD=BC=ВМ+МС=9+4=13 дм AD=13 дм
S O K Пирамида правильная, значит в основании лежит равносторонний треугольник. По условию задачи сторона правильного треугольника a = 10 см Найдём радиус вписанной в равносторонний треугольник окружности: ОК = (см) где р – периметр основания, l – апофема По условию задач, боковая грань наклонена к плоскости основания под углом в 600 , значит в треугольнике SOK линейный угол <SKO = 600 ; Апофема SK = I = H : sin + ответ:
Меньшая диагональ ромба AC делит его на 2 равносторонних треугольника, т.к. АВ=ВС. Угол В=60 градусов, значит углы при основании треугольника АВС =60 градусов каждый (180-60) : 2 =60. Значит треугольник АВС - равносторонний. От сюда следует, что АС=АВ=ВС=15 см
2. В параллелограмме АВСD биссектриса АЕ делит ВС на отрезки ВЕ=7см и ЕС=5см. BC=AD=ВЕ+ЕС=7+5=12(cm) ВС=AD=12см
Треугольник ABC - равнобедренный, т.к. угол ЕАD=углу АЕВ (накрест лежащие углы при параллельных прямых), а угол ВАЕ = углу АЕВ. Значит АВ=7см и DC=7см.
Периметр ABCD=12+12+7+7= 38(см)
3. Треугольник ABC - равнобедренный, т.к. угол BAC = углу АМВ (накрест лежащие углы при параллельных прямых). Значит АВ=ВМ, АВ=СD=9дм, ВМ=9 дм.
АD=BC=ВМ+МС=9+4=13 дм
AD=13 дм
Пирамида правильная, значит в основании лежит равносторонний треугольник. По условию задачи сторона правильного треугольника a = 10 см Найдём радиус вписанной в равносторонний треугольник окружности: ОК = (см) где р – периметр основания, l – апофема По условию задач, боковая грань наклонена к плоскости основания под углом в 600 , значит в треугольнике SOK линейный угол <SKO = 600 ; Апофема SK = I = H : sin + ответ: