15.16. Қандай да бір түзу екі параллель түзудің біреуін қиып өтсе, онда ол екіншісін де қиып өтетінін дәлелдеңдер. 15.17. Үшінші түзуге параллель екі түзу өзара параллель болатынын
Значит так: Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) . Запишем неравенство: - всё это конечно углы. Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP) ∠P>∠N Значит против ∠Р лежит сторона, большая от стороны против угла N И меньшая стороне NP. В итоге получаем: NP>ON>OP Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.
Этот угол равен 110Проведи в треугольнике среднюю линию MN параллельную AB. Угол BMN равен углу АBM, как внутренние накрест лежащие при параллельных прямых (средняя линия MN параллельна AB) и, следователен, равен 40 градусам, поскольку угол АBM равен 40 градусам по условию. А теперь рассмотрим треугольник BMN. Средняя линия MN равна половине АB, но BM тоже равна половине АВ по условию. Значит, треугольник ВМN равнобедренный с углом 40 градусов при его вершине М. Тогда два других угла равны (180-40)/2=70 градусов, потому что сумма углов треугольника равна 180 градусов, а углы при основании равнобедренного треугольника равны между собой. Но угол АВС=угол АВМ + угол МВN, а угол МВN равен 70 градусам. Значит угол АВС=40+70=110 градусов.
Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) .
Запишем неравенство:
- всё это конечно углы.
Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N
Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP)
∠P>∠N
Значит против ∠Р лежит сторона, большая от стороны против угла N
И меньшая стороне NP.
В итоге получаем:
NP>ON>OP
Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.
Этот угол равен 110Проведи в треугольнике среднюю линию MN параллельную AB. Угол BMN равен углу АBM, как внутренние накрест лежащие при параллельных прямых (средняя линия MN параллельна AB) и, следователен, равен 40 градусам, поскольку угол АBM равен 40 градусам по условию. А теперь рассмотрим треугольник BMN. Средняя линия MN равна половине АB, но BM тоже равна половине АВ по условию. Значит, треугольник ВМN равнобедренный с углом 40 градусов при его вершине М. Тогда два других угла равны (180-40)/2=70 градусов, потому что сумма углов треугольника равна 180 градусов, а углы при основании равнобедренного треугольника равны между собой. Но угол АВС=угол АВМ + угол МВN, а угол МВN равен 70 градусам. Значит угол АВС=40+70=110 градусов.