Треугольник ΔABH = ΔCBH по первому признаку равенства треугольников так как, AB = CB, ∠ABH = ∠CBH - по условию, а сторона BH - общая для треугольников, следовательно из равенства треугольников, что соответствующие стороны элементы, тогда AH = HC.
2.
Так как AB = BC по условию, тогда треугольник ΔABC - равнобедренный, тогда по свойству равнобедренного треугольника углы при основании следовательно (AC - основание) угол ∠BAK = =∠BCK.Треугольник ΔAKE = ΔKPC по второму признаку равенства треугольников так как, AK = KC, ∠AKE = ∠PKC - по условию, а угол ∠BAK = ∠BCK потому, что треугольник ΔABC - равнобедренный.
3.
Треугольник ΔABD = ΔCBD по третьему признаку равенства треугольников так как, AB = BC, AD = DC - по условию, а сторона
BD - общая треугольников, следовательно соответствующие элементы треугольников равны и угол ∠ABD = ∠CBD тогда BD - биссектриса
Т.к. боковые ребра пирамиды равны, то и их проекции на основание тоже равны, следовательно, основание высоты пирамиды будет центр описанной около прямоугольного треугольника окружности)) известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы. в основании египетский треугольник, т.е. гипотенуза =10 высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10) h² = 13² - 5² = (13-5)(13+5) = 8*18 h = 4*3 = 12
1.
Треугольник ΔABH = ΔCBH по первому признаку равенства треугольников так как, AB = CB, ∠ABH = ∠CBH - по условию, а сторона BH - общая для треугольников, следовательно из равенства треугольников, что соответствующие стороны элементы, тогда AH = HC.
2.
Так как AB = BC по условию, тогда треугольник ΔABC - равнобедренный, тогда по свойству равнобедренного треугольника углы при основании следовательно (AC - основание) угол ∠BAK = =∠BCK.Треугольник ΔAKE = ΔKPC по второму признаку равенства треугольников так как, AK = KC, ∠AKE = ∠PKC - по условию, а угол ∠BAK = ∠BCK потому, что треугольник ΔABC - равнобедренный.
3.
Треугольник ΔABD = ΔCBD по третьему признаку равенства треугольников так как, AB = BC, AD = DC - по условию, а сторона
BD - общая треугольников, следовательно соответствующие элементы треугольников равны и угол ∠ABD = ∠CBD тогда BD - биссектриса
угла ∠ABC.
известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы.
в основании египетский треугольник, т.е. гипотенуза =10
высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10)
h² = 13² - 5² = (13-5)(13+5) = 8*18
h = 4*3 = 12