2. Что можно сказать о взаимном расположении прямой и окружности, если диаметр окружности равен 10,3 см, а расстояние от центра окружности до прямой равно
а) 4,15 см; б) 2 дм; в)5,15 см.
3. Определить взаимное расположении прямой и окружности, d-расстояние от центра окружности до прямой, R- радиус окружности, если:
1) R=16cм, d=12см
2) R=8 см, d=1,2дм
3) R=5 см, d=50мм
ответ написать, в виде вывода а) прямая и окружность не имеют общих точек;
б) прямая является касательной к окружности;
в) прямая пересекает окружность.
4. Каковы взаимные расположения окружностей и , d – расстояние между центрами окружностей, если :
1)
2)
3)
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас
вроде так
mb перпендикулярна плоскости abc - по условию
значит mb перпендикулярна ab , которая лежит в плоскости abc
cb перпендикулярна ab - из рисунка
cb и mb пересекаются в т.В и лежат в одной плоскости mbc
так как ab перпендикулярна ДВУМ пересекающимся прямым, то ab перпендикулярна плоскости mbc
прямая cd проходит через две точки (C и D) в плоскости mbc
значит cd лежит в плоскости mbc
так как прямая ab перпендикулярна плоскости mbc , то она перпендикулярна
любой прямой , лежащей в этой плоскости
следовательно угол между прямыми AB и CD = 90 град