2. Если в следующих фразаз имеется ошибка, найдите и исправьте ее: 1. Углы, сумма которых равна 180°, — это смежные углы. 2. Прямая, исходящая из вершины угла и делящая угол пополам, называется биссектрисой угла. 3. Угол, обе стороны которого лежат на лучах, называется развернутым углом. 4. Углы, получающихся при пересечении двух прямых, называются вертикальными. 5. От начала данного луча можно отложить только один прямой угол. . 6. Сумма вертикальных углов равна 180°.
sin(α + β) = sin (α) · cos (β) + cos (α) · sin (β)
sin(α + β) = 19/25 · 24/25 + 2√66/25 · 7/25 = (456+14√66)/625
--- 5 ---
ЕН - высота параллелограмма
АВ*sin(α+β) = ОН + ОЕ
(x+y)*sin(α+β) = 19 + 7
(24+y)*(456+14√66)/625 = 26
24+y = 26*625/(456+14√66)
Иррациональность в знаменателе... нехорошо. Домножим на сопряжённое
24+y = 26*625*(456-14√66)/(456² - (14√66)²)
24+y = 26*625*(456-14√66)/(207936 - 196*66)
24+y = 26*625*(456-14√66)/(207936 - 12936)
24+y = 26*625*(456-14√66)/195000 = 26*(456-14√66)/312 = (456-14√66)/12
24+y = 38 - 7√66/6
y = 14 - 7√(11/6)
И это прекрасно :)
--- 6 ---
Теорема косинусов, треугольника АВС, сторона ВС
ВС² = AC² + AB² - 2*AB*AC*cos(∠BAC)
(y+z)² = (x+y)² + (x+z)² - 2(x+y)*(x+z)*cos(2*β)
(y+z)² = (24+y)² + (24+z)² - 2(24+y)*(24+z)*527/625
y² + 2yz + z² = 576 + 48y + y² + 576 + 48z + z² - 2*527/625*(576 + 24y + 24z + yz)
2yz = 576 + 48y + 576 + 48z - 2*527/625*(576 + 24y + 24z + yz)
yz = 576 + 24y + 24z - 527/625*(576 + 24y + 24z + yz)
625yz = 625*576 + 625*24y + 625*24z - 527*(576 + 24y + 24z + yz)
625yz = 360000 + 15000y + 15000z - 303552 - 12648y - 12648z - 527yz
1152yz = 2352y + 2352z + 56448
24yz = 49y + 49z + 1176
y(24z - 49) = 49z + 1176
Подставляем y
(14 - 7√(11/6))(24z - 49) = 49z + 1176
(2 - √(11/6))(24z - 49) = 7z + 168
48z - 98 - 4√66z + 49√(11/6) = 7z + 168
41z - 4√66*z = 266 - 49√(11/6)
z = (266 - 49√(11/6)) / (41 - 4√66)
Домножаем на сопряжённый множитель
z = (266 - 49√(11/6))(41 + 4√66) / (41² - (4√66)²)
z = (266*41 + 266*4√66 - 49*41√(11/6) - 49*4*11) / (1681 - 16*66)
z = (10906 + 1064√66 - 2009√(11/6) - 2156) / 625
z = (10906 + 1064*6√(11/6) - 2009√(11/6) - 2156) / 625
z = (8750 + 4375√(11/6)) / 625
z = 14 + 7√(11/6)
--- 7 ---
Стороны параллелограмма
АВ = x + y = 24 + 14 - 7√(11/6) = 38 - 7√(11/6)
АД = ВС = y + z = 14 - 7√(11/6) + 14 + 7√(11/6) = 28
Площадь
S = АВ*АД*sin(∠ВАД)
S = (38 - 7√(11/6))*28*(456+14√66)/625
S = 28/625*(38*456 - 7*14*11 - 7*456√(11/6) + 38*14√66)
S = 28/625*(17328 - 1078 - 532√66 + 532√66)
S = 28*26
S = 728
Расстояния от О до AD и перпендикуляр из О на BC лежат на одной прямой (так как стороны параллелограмма попарно параллельны) и составляют высоту параллегограмма → h = 19 + 7 = 26 → Sabcd = BC * h = 26*BC
С О опускаем опускаем перпендикуляры на стороны АВС. Точка на AC назовем E, на ВС - F, на AB - G. ЕС = CF, BF = BG, AE = AG
По теореме Пифагора AG = AE = √25^2 - 7^2 = 24. BC = BG + EC → Pabc = AG + AE + 2* BC = 2(AE + BC) → Sabc = 1/2 rPabc = 7(24 + BC)
Sabcd = 2*Sabc = 14(24 + BC)
14(24 + BC) = 26*BC
336 + 14*BC = 26*BC
BC = 336 / 12 = 28
Sabcd = 28 * 26 = 728