2. На рисунке помечены равные элементы двух треугольников. Какож разенство інужно добавить, чтобы треугольники были равны по третьему признаку равенства треуОЛЬНИКОВ? 1) BC - PR 2) ВС" - МК 3) ZA - И ДА 1 2 3 4
Найдём сначала длину диагонали. Обозначим её за х. Исходя из того, что она делит трапецию на два подобных треугольника, получим: 4/х = х/9 х•х = 4•9 х² = 36 х = 6 см. Значит, диагональ равна 6 см. Длина окружности равна l = 2πr. Радиус вписанной окружности равен r = S/p. Площади подобных треугольников будут относиться так же, как м квадрат коэффициента подобия, полупериметры будут относиться как коэффициент подобия (p - полупериметр). Тогда r1/r2 = k. Коэффициент подобия равен 4/6 = 2/3. Тогда радиус меньшей окружности будет относиться к радиусу большей окружности как 2:3 и => длины окружностей будут относиться так же, как и радиусы. lмень = 18/3 • 2 = 12. ответ: 12.
Вообще небольшая ошибка. На рисунке угол 80 градусов, а в условии 90
1. Если угол 80 градусов:
Точки A и B являются касательными к окружности. Радиус, проведенный к точке описанной окружности образует с касающей угол 90 градусов, то есть углы OAC и OBC равны по 90 градусов.
Сумма углов четырёхугольника равна 360 градусов. Мы знаем 3 угла, нам нужно найти 4-ый.
Угол ACB = 360 - 80 - 90 - 90 = 100 градусов
2. Если угол 90 градусов:
Точки A и B являются касательными к окружности. Радиус, проведенный к точке описанной окружности образует с касающей угол 90 градусов, то есть углы OAC и OBC равны по 90 градусов.
Сумма углов четырёхугольника равна 360 градусов. Мы знаем 3 угла, нам нужно найти 4-ый.
4/х = х/9
х•х = 4•9
х² = 36
х = 6 см.
Значит, диагональ равна 6 см.
Длина окружности равна l = 2πr.
Радиус вписанной окружности равен r = S/p.
Площади подобных треугольников будут относиться так же, как м квадрат коэффициента подобия, полупериметры будут относиться как коэффициент подобия (p - полупериметр).
Тогда r1/r2 = k.
Коэффициент подобия равен 4/6 = 2/3.
Тогда радиус меньшей окружности будет относиться к радиусу большей окружности как 2:3 и => длины окружностей будут относиться так же, как и радиусы. lмень = 18/3 • 2 = 12.
ответ: 12.
Вообще небольшая ошибка. На рисунке угол 80 градусов, а в условии 90
1. Если угол 80 градусов:
Точки A и B являются касательными к окружности. Радиус, проведенный к точке описанной окружности образует с касающей угол 90 градусов, то есть углы OAC и OBC равны по 90 градусов.
Сумма углов четырёхугольника равна 360 градусов. Мы знаем 3 угла, нам нужно найти 4-ый.
Угол ACB = 360 - 80 - 90 - 90 = 100 градусов
2. Если угол 90 градусов:
Точки A и B являются касательными к окружности. Радиус, проведенный к точке описанной окружности образует с касающей угол 90 градусов, то есть углы OAC и OBC равны по 90 градусов.
Сумма углов четырёхугольника равна 360 градусов. Мы знаем 3 угла, нам нужно найти 4-ый.
Угол ACB = 360 - 90 - 90 - 90 = 90 градусов