2 Найдите на рисунке 10.28 пары равных треуголь- ников и докажите их равенство. На чертежах рав- ные отрезки обозначены одинаковыми штрихами, аравные углы — одинаковыми дугами. Указание: у двух треугольников на приведённых рисунках может быть общая сторона или же об- щий угол. В этих случаях логично считают, что У таких треугольников совпадающие стороны (или углы) одинаковы, так как каждый отрезок или каждый угол равен сам себе. Общая сторона у двух треугольников обозначается значком ~.
АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Объяснение:
отрезок EF, точка С, не лежащая на прямой EF, и точка D,
лежащая на прямой EF. Выясните взаимное расположение прямой
CD и отрезка EF.
[2]
2. Найдите углы, образованные при пересечении двух прямых, если
один из них равен 520.
[2]
3. Точки А, В и С расположены на одной прямой, причем AB=6см,
ВС=14см. Какой может быть длина отрезка АС?
[2]
4
а) Начертите прямой угол ABD;
b) Внутри угла проведите луч ВС;
c) Найдите величину ZABC и CBD , если ZABC на 40°
больше 2CBD.
[3]
5. Один из смежных углов в 4 раза меньше другого .Найдите эти
углы.
[3]
6. На прямой отложены два равных отрезка АС и СВ. На отрезке CB
взята точка D, которая делит его в отношении 2:3, считая от точки С.
Найдите длину отрезков Ac, DB и AB, если CD-14 см.
[3]
7. Ланы два угла лов и DOC с общей вершиной. Угол DOC
расположен внутри угла лов. Стороны одного угла
перпендикулярны к сторонам другого. Найдите эти углы, если
разность между ними равна прямому углу,
(5)
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3 / (2√(5 - 4cos80°))
BB₁ = 3x = 9 / (2√(5 - 4cos80°)) или
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2