2. Равнобедренный треугольник ABC вписан в окружность. Основание треугольника AB равно радиусу окружности. Найдите величины углов АОС, АОВ и ВОС. Если угол ОАВ = 55⁰только с дано,найти и решением.
MP и MK - перпендикуляры, значит <MKC=<MPC=90°, т.е. сумма этих двух противоположных друг другу углов равна 180°. Значит и сумма оставшихся двух (тоже противоположных другу другу) углов будет равна 180°, поскольку сумма углов четырёхугольника равна 360°.
Вокруг четырехугольника окружность можно описать только если сумма противоположных углов равна 180°.
Это условие выполняется, значит вокруг четырёхугольника MPCK можно описать окружность.
Также, поскольку, например, <MKC=90°, и он вписанный, значит СМ - диаметр (Плоский угол, опирающийся на диаметр окружности, — прямой).
Дано : треугольник ABC и треугольник HKP, AB = HK, AC = HP, угол LA = углу L
Доказать : треугольник ABC = треугольнику HKP
Доказательство :
1)по условию теоремы угол A = углу H,поэтому треугольник ABC можно наложить на треугольник HKP так, что вершина A совместится с вершиной H,а стороны AB и AC наложатся соответственно на лучи HK и HKP
2) По условию AB= HK, AC = HP, следовательно, сторона AB совместится со стороной HP, а сторона AC - со стороной HK, в частности, совместятся точки B и K, C и P. Поэтому совместятся стороны P и BC.
3) Итак, треугольники ABC и HKP полностью совместятся, значит, они равны.
Теорема доказана.
Объяснение:
MP и MK - перпендикуляры, значит <MKC=<MPC=90°, т.е. сумма этих двух противоположных друг другу углов равна 180°. Значит и сумма оставшихся двух (тоже противоположных другу другу) углов будет равна 180°, поскольку сумма углов четырёхугольника равна 360°.
Вокруг четырехугольника окружность можно описать только если сумма противоположных углов равна 180°.
Это условие выполняется, значит вокруг четырёхугольника MPCK можно описать окружность.
Также, поскольку, например, <MKC=90°, и он вписанный, значит СМ - диаметр (Плоский угол, опирающийся на диаметр окружности, — прямой).
Доказать : треугольник ABC = треугольнику HKP
Доказательство :
1)по условию теоремы угол A = углу H,поэтому треугольник ABC можно наложить на треугольник HKP так, что вершина A совместится с вершиной H,а стороны AB и AC наложатся соответственно на лучи HK и HKP
2) По условию AB= HK, AC = HP, следовательно, сторона AB совместится со стороной HP, а сторона AC - со стороной HK, в частности, совместятся точки B и K, C и P. Поэтому совместятся стороны P и BC.
3) Итак, треугольники ABC и HKP полностью совместятся, значит, они равны.
Теорема доказана.