2. Составьте уравнение образа окружности
х^2 + у^2 – 10х + 12у + 76 = 0 при:
а) осевой симметрии относительно оси Ох;
б) центральной симметрии относительно начала координат;
в) при параллельном переносе на вектор а {3; - 4};
г) при повороте на 270° по часовой стрелке относительно начала координат
Теперь по теореме косинусов можно выразить длины этих сторон через длину биссектрисы L и отрезки основания 3 и 4.
L^2 + 3^2 - 3*L = 9*x^2;
L^2 + 4^2 + 4*L = 16*x^2;
(учтено, что cos(60°) = 1/2; cos(120°) = -1/2)
16*(L^2 + 3^2 - 3*L ) = 9*(L^2 + 4^2 + 4*L);
это даже не квадратное уравнение (кстати, это можно было предвидеть заранее, так как L = 0 очевидно является решением)
7*L^2 - (48 + 36)*L = 0; L^2 - 12*L = 0;
L = 12.