Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Диагональ призмы, равная 8, образует прямоугольный треугольник с ребром призмы и одной из диагоналей основания: где гипотенуза 8 (диагональ призмы), один из катетов 2 (высота призмы), а второй катет (диагональ основания) находится по теореме Пифагора d1=√ 64-4=√6о Аналогично вторая диагональ призмы, равная 5, образует прямоугольный треугольник с высотой призмы и второй диагональю основания. Гипотенуза 5, один катет 2, второй катет (вторую диагональ основания) находим так же по Теореме Пифагора d2=√25-4=√21 Диагонали ромба точкой пересечения делятся пополам и пересекаются под прямым углом. Следовательно ромб делится на 4 одинаковых прямоугольных треугольника. Рассмотрим один из них: гипотенуза - сторона ромба, катеты - половинки диагоналей ромба. Находим гипотенузу по теореме Пифагора а=√(60+21)/4=√81/4=9/2=4,5
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
Аналогично вторая диагональ призмы, равная 5, образует прямоугольный треугольник с высотой призмы и второй диагональю основания. Гипотенуза 5, один катет 2, второй катет (вторую диагональ основания) находим так же по Теореме Пифагора d2=√25-4=√21
Диагонали ромба точкой пересечения делятся пополам и пересекаются под прямым углом. Следовательно ромб делится на 4 одинаковых прямоугольных треугольника. Рассмотрим один из них: гипотенуза - сторона ромба, катеты - половинки диагоналей ромба. Находим гипотенузу по теореме Пифагора а=√(60+21)/4=√81/4=9/2=4,5