2 в окружность описан равнобедренный треугольник ABC с основанием Вс. Найдите величины дут AB и BC, если дуга AC равна 102, аутол Bв треугольнине ABC равен 51°.
-Длина отрезка ОВ равна длине отрезка ОС как радиусы окружности.
ОВ = ОС = 4 см.
-Радиусы ОВ и ОС проведены к точкам касания В и С касательных АВ и АС, тогда радиусы ОВ и ОС перпендикулярны касательным АВ и АС, а тогда треугольники АОС и АОВ прямоугольные.
-Касательные АС и АВ проведены из одной точки А, тогда, по свойству касательных, АВ = АС.
-В прямоугольных треугольниках АОВ и АОС гипотенуза АО общая, катет ОВ = ОС, тогда треугольники АОВ и АОС равны по катету и гипотенузе.
-Длина отрезка ОВ равна длине отрезка ОС как радиусы окружности.
ОВ = ОС = 4 см.
-Радиусы ОВ и ОС проведены к точкам касания В и С касательных АВ и АС, тогда радиусы ОВ и ОС перпендикулярны касательным АВ и АС, а тогда треугольники АОС и АОВ прямоугольные.
-Касательные АС и АВ проведены из одной точки А, тогда, по свойству касательных, АВ = АС.
-В прямоугольных треугольниках АОВ и АОС гипотенуза АО общая, катет ОВ = ОС, тогда треугольники АОВ и АОС равны по катету и гипотенузе.
Тогда угол ОАВ = ОАС = ВАС / 2 = 56 / 2 = 280.
ответ:280
У завданнях 1-6 виберіть правильну відповідь.
1. Яке з наведених висловлювань має такий самий зміст, що і висловлювання «Площини α і β мають спільну точку А»?
A. Площини α і β не мають інших спільних точок, крім точки A.
Б. Площини а і β можуть мати ще тільки одну спільну точку.
B. Площини α і β перетинаються по прямій, що проходить через точку A.
Г. Площини α і β перетинаються, і лінією їхнього перетину є відрізок із серединою в точці A.
2. Через яку з наведених фігур можна провести більше ніж одну площину?
A. Кінці однієї діагоналі паралелограма і середину іншої діагоналі.
Б. Діаметр кола і точку цього кола, що не належить діаметру.
B. Сторони кута, що не є розгорнутим.
Г. Середини всіх сторін трикутника.
3. Трапеція ABCD (BC і AD — основи трапеції) і ромб BCEF не лежать в одній площині. Які з наведених прямих є мимобіжними?