20
1.
на клетчатой бумаге нарисован треугольник abc. найти его периметр, если сторона одной клетки равна 1 см.
(прикрепил рисунок)
2.
найдите высоту, проведенную к наибольшей стороне треугольника со сторонами 10, 17 и 21 см.
3.
из одной точки к окружности проведено две касательные. длина касательной равна 156 см, а расстояние между точками касания равно 120 см. найти радиус окружности.
Задача решается через векторы.
Построим вектор ;
Середина D отрезка AB может быть найдена откладыванием половины вектора от точки A
;
Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;
От точки D нужно отложить вектор высоты в обе возможные стороны
Вектор высоты перпендикулярен вектору основания , а значит его проекции накрест-пропорциональны с противоположным знаком:
(I) , что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: (II) ;
Таким образом вектор пропорционален вектору , поскольку для вектора выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора ;
Вектор имеет длину ;
Аналогично, AB = 10
При этом, поскольу треугольник равносторонний, то значит его высота составляет , т.к ;
Значит , а стало быть ;
В итоге .
Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:
ОТВЕТ:
/// примечание: ;
/// примечание: .
20
Объяснение:
Соединим центр окружности с концами хорд.
= = OC = OD как радиусы.
Проведем OK.LAB и и OH. LCD, OK = 21 - расстояние от центра до АВ,
ОН - искомое расстояние от центра до CD.
ДОАВ равнобедренный, значит OK - высота и медиана.
AK = KB = 1/2AB = 1/2 40 = 20
Из прямоугольного треугольника АКО по теореме Пифагора:
= /(AK2 + KO2) = v(202 + 212) = v(400
+ 441) = +/841 = 29 CO = AO = 29
ACOD равнобедренный, значит ОН - высота и медиана,
CH = HD = 1/2CD = 1/2 42 = 21 Из прямоугольного треугольника СОН по теореме Пифагора:
ОН = v(CO2 - CH?) = -/(292 - 212) = v(841 - 441) = v400 = 20