В равнобедренном треугольнике ABC к основанию AC проведена биссектриса BK. Периметр треугольника ABK равен 12 см, а периметр треугольника ABC равен 20 см.
Пусть стороны АВС равны а,в и с. Биссектриса угла при вершине равнобедренного треугольника является также и медианой и высотой h. Составим систему уравнений на основе данных задания. Р(АВК) = с + h +(b/2) = 12. P(ABC) = 2c + 2(b/2) = 20. Разделим на 2: c + (b/2) = 10. Из первого уравнения имеем h = 12 - (c + (b/2)) = 12 - 10 = 2 см.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
DB₁² = AB² + AD² + AA₁²
x² + x² + (2x)² = (2√6)²
2x² + 4x² = 24
6x² = 24
x² = 4
x = 2 (x = - 2 не подходит по смыслу задачи)
АВ = 2, AD = 2, АА₁ = 4.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁D - наклонная, BD - ее проекция, тогда угол между В₁D и плоскостью АВС - ∠В₁DB.
Пусть стороны АВС равны а,в и с.
Биссектриса угла при вершине равнобедренного треугольника является также и медианой и высотой h.
Составим систему уравнений на основе данных задания.
Р(АВК) = с + h +(b/2) = 12.
P(ABC) = 2c + 2(b/2) = 20. Разделим на 2: c + (b/2) = 10.
Из первого уравнения имеем h = 12 - (c + (b/2)) = 12 - 10 = 2 см.
ответ: длина биссектрисы BK равна 2 см.
По условию АВ : AD : AA₁ = 1 : 1 : 2
Пусть х - коэффициент пропорциональности. Тогда
АВ = AD = x
АА₁ = 2х
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
DB₁² = AB² + AD² + AA₁²
x² + x² + (2x)² = (2√6)²
2x² + 4x² = 24
6x² = 24
x² = 4
x = 2 (x = - 2 не подходит по смыслу задачи)
АВ = 2, AD = 2, АА₁ = 4.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁D - наклонная, BD - ее проекция, тогда угол между В₁D и плоскостью АВС - ∠В₁DB.
ΔB₁BD:
sin∠B₁DB = BB₁ / B₁D = 4 / (2√6) = 2/√6 = √6/3
∠B₁DB = arcsin (√6/3)