Т.к. она равноудалена от вершин треугольника АВС, то ее перпендикуляр МН (расстояние до треугольника) опускается в центр описанной около треугольника окружности. Центр описанной около прямоугольного треугольника окружности лежит в середине гипотенузы.
По условию, вd=11.3 см, и он является катетом в прямоуг. треугольнике bdc. гипотенуза этого треугольника (bd) в 2 раза меньше катета=> по свойству прямоугольного треугольника если катет в 2 раза меньше гипотенузы то острый угол напротив этого катета равен 30 градусам. то есть > с равен 30 градусам. так как авс равнобедренный, углы при основании равны то есть < а=< с=30 градусов. мы знаем, что сумма углов треугольника равна 180. тогда < а=180-30-30=120 градусов. ответ: < вас=30 < вса=30 < авс=120
Пусть точка вне плоскости М.
Т.к. она равноудалена от вершин треугольника АВС, то ее перпендикуляр МН (расстояние до треугольника) опускается в центр описанной около треугольника окружности. Центр описанной около прямоугольного треугольника окружности лежит в середине гипотенузы.
Значит НВ = АВ:2 = 6см
Получился прямоугольный треугольник МВН: гипотенуза МВ = 10см,
катет НВ = 6см и катет МН, который нужно найти.
Теорема Пифагора
МН² = МВ² - НВ² = 100 - 36 = 64 = 8²
ответ: расстояние от точки до плоскости 8 см