1. Все точки на оси абсцис имеют координату игрек равную 0.
Обозначим искомую точку как С(х; 0)
Тогда AC = BC
√((х+2)^2 + (0-6)^2) = √((х-7)^2 + (0-3)^2)
(х+2)^2 + 36 = (х-7)^2 + 9
х^2+4х+4+36 = х^2-14х+49+9
4х+40 = -14х+58
18х = 18
х = 1
ответ: С(1;0)
2. Чтобы этот четырёхугольник был параллелограмом, средины его диагоналей должны находится в одной точке.
Найдём средину АС: Μ((1+9)/2; (1-1)/2) = M(5; 0)
Найдём средину BD: (тут походу ошибка в условии, вместо одного из двух чисел 5 должно быть -5, допустим, у D вторая координата должна равнятся -5) N((3+7)/2; (5-5)/2) = N(5;0)
M совпадает с N, значит, данный четырёхугольник является параллелограмом.
АС = √((9-1)^2+(-1-1)^2) = √(64+4) = √68 = 2√17 см
ВD = √((7-3)^2+(-5-5)^2) = √(16+100) = √116 = 2√29 см
3. С треугольника NMO: MO = NO*ctg45° = 6*1 = 6 см
MN = NO/sin45* = 6√2 см
С треугольника NKO: NK = √(NO^2+KO^2) = √(36+16) = √52 = 2√13 см
Формула медианы треугольника:
m = 1/2*√(2a^2+2b^2-c^2), где a, b - прилегающие стороны, с - противолежащая сторона.
Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
1. Все точки на оси абсцис имеют координату игрек равную 0.
Обозначим искомую точку как С(х; 0)
Тогда AC = BC
√((х+2)^2 + (0-6)^2) = √((х-7)^2 + (0-3)^2)
(х+2)^2 + 36 = (х-7)^2 + 9
х^2+4х+4+36 = х^2-14х+49+9
4х+40 = -14х+58
18х = 18
х = 1
ответ: С(1;0)
2. Чтобы этот четырёхугольник был параллелограмом, средины его диагоналей должны находится в одной точке.
Найдём средину АС: Μ((1+9)/2; (1-1)/2) = M(5; 0)
Найдём средину BD: (тут походу ошибка в условии, вместо одного из двух чисел 5 должно быть -5, допустим, у D вторая координата должна равнятся -5) N((3+7)/2; (5-5)/2) = N(5;0)
M совпадает с N, значит, данный четырёхугольник является параллелограмом.
АС = √((9-1)^2+(-1-1)^2) = √(64+4) = √68 = 2√17 см
ВD = √((7-3)^2+(-5-5)^2) = √(16+100) = √116 = 2√29 см
3. С треугольника NMO: MO = NO*ctg45° = 6*1 = 6 см
MN = NO/sin45* = 6√2 см
С треугольника NKO: NK = √(NO^2+KO^2) = √(36+16) = √52 = 2√13 см
Формула медианы треугольника:
m = 1/2*√(2a^2+2b^2-c^2), где a, b - прилегающие стороны, с - противолежащая сторона.
m = 1/2 * √(2*72+2*100-52) = 1/2 * √292 = √73 см
AOD - прямоугольный треугольник.
ОР - высота из прямого угла в треугольнике AOD.
ОР=√(АР*РD)=√(6√3*2√3)=6см.
По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см.
R=AJ=JO=JP = АО/2 = 6см.
Площадь круга Sк=π*R²=36π.
В прямоугольном треугольнике АРО катет ОР равен половине
гипотенузы АО, значит <PAO=30°,
<РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°.
<PJK=120°(центральный угол, опирающийся на дугу РОК).
РН=0,5*АР=3√3см (катет против угла 30°).
AH=√(АР²-РH²)=√(108-27)=9см.
Площадь треугольника АКР равна
Sapk=AH*PH=9*3√3=27√3см².
Площадь сегмента КОР равна
Skop=(R²/2)*(π*α/180 -Sinα) - формула.
В нашем случае α=<PKJ =120°.
Skop=(36/2)*(π*120/180 -√3/2)
Skop=(12π-9√3)см².
Искомая площадь равна
S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².