3. (4б.) В окружности с центром в точке О к хорде LM, равной радиусу окружности,
перпендикулярно проведен диаметр EK. Диаметр EK и хорда LM пересекаются в точке А.
Длина отрезка LА равна 15 см.
a) постройте рисунок по условию задачи;
b) определите длину хорды LM;
c) определите длину диаметра EK;
d) найдите периметр треугольника О
29,6 км/год
Объяснение:
Час шляху дорівнюватиме часу вниз за течією + час вгору за течією. Тобто: 24 / (Vпароплава + 4) + 24 / (Vпароплава - 4) = 2,5 год.
Приводимо до спільного знаменника і отримуємо:
(24(Vпароплава + 4) + 24(Vпароплава - 4)) / (Vпароплава + 4)(Vпароплава - 4) = 2,5
Виносимо 24 за дужки, і перемножуємо праву і ліву частину рівняння за правилом пропорції. У нас виходить квадратне рівняння. Вирішуємо його, і отримуємо два Vпароплава. Одне негативне - ця відповідь не підходить. А друге 29.6 км/год.
Вот и ответ.
Пирамида усечена плоскостью, параллельной основанию.
Отсеченная пирамида подобна исходной 6:8 =3:4
Следовательно, части, заключенные между плоскостями, относятся к исходным 1:4.
Найдем высоту и апофему исходной пирамиды.
Правильная пирамида, в основании квадрат, вершина падает в центр основания.
Центр описанной окружности квадрата - пересечение диагоналей.
Диагонали квадрата перпендикулярны, равны, точкой пересечения (O) делятся пополам.
AO =AB sin45 =8*√2/2 =4√2
SO⊥(ABC), SAO=60
SO =AO tg60 =4√2*√3 =4√6 (исходная высота)
Боковые грани правильной пирамиды - равнобедренные треугольники.
Высота боковой грани - апофема - является медианой.
K - середина AB, KO=AB/2=4 (медиана из прямого угла)
SK =√(SO^2+KO^2) =4√(1+6) =4√7 (исходная апофема)
OO1/SO =KK1/SK =1/4
высота усеченной пирамиды OO1=√6 (см)
апофема усеченной пирамиды KK1=√7 (см)