Дано:
ABCDEFGH - прямоугольный параллелепипед
AB:BC:BF = 1:2:3
Sполн = 550 см²
------------------------------------------------------------------------------
Найти:
AB - ?, BC - ?, BF - ?
Пусть AB = x см, тогда BC = 2x см, и BF = 3x см.
Запишем формулу площади полной поверхности параллелепипеда:
Sполн =
Именно по такой формуле площади полной поверхности параллелепипеда мы найдем все длины параллелепипеда:
Sполн = 2(AB×BC+BC×BF+AB×BF)
550 = 2(x × 2x + 2x × 3x + x × 3x см)
550 = 2(2x² + 6x² + 3x²)
550 = 2×11x²
550 = 22x²
x² = 25
x = √25
x = 5 см ⇒ AB = 5 см, следовательно:
BC = 2x = 2×5 см = 10 см
BF = 3x = 3×5 см = 15 см
ответ: AB = 5 см, BC = 10 см, BF = 15 см
P.S. Рисунок показан внизу↓
ответ:А (-1, -1, -1), В (-1, 3, -1), С (-1, -1, 2)
AB=\sqrt{\big(x_B-x_A\big)^2+\big(y_B-y_A\big)^2+\big(z_B-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-(-1)\big)^2}==\sqrt{0+4^2+0}=4
CB=\sqrt{\big(x_B-x_C\Big)^2+\big(y_B-y_C\big)^2+\big(z_B-z_C\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-2\big)^2}==\sqrt{0+16+9}=5
AC=\sqrt{\big(x_C-x_A\big)^2+\big(y_C-y_A\big)^2+\big(z_C-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(-1-(-1)\big)^2+\big(2-(-1)\big)^2}==\sqrt{0+0+3^2}=3
P_{\Delta ABC}=AB+CB+AC=4+5+3=12boxed{\boldsymbol{P_{\Delta ABC}=12}}
Объяснение:
Дано:
ABCDEFGH - прямоугольный параллелепипед
AB:BC:BF = 1:2:3
Sполн = 550 см²
------------------------------------------------------------------------------
Найти:
AB - ?, BC - ?, BF - ?
Пусть AB = x см, тогда BC = 2x см, и BF = 3x см.
Запишем формулу площади полной поверхности параллелепипеда:
Sполн =
Именно по такой формуле площади полной поверхности параллелепипеда мы найдем все длины параллелепипеда:
Sполн = 2(AB×BC+BC×BF+AB×BF)
550 = 2(x × 2x + 2x × 3x + x × 3x см)
550 = 2(2x² + 6x² + 3x²)
550 = 2×11x²
550 = 22x²
x² = 25
x = √25
x = 5 см ⇒ AB = 5 см, следовательно:
BC = 2x = 2×5 см = 10 см
BF = 3x = 3×5 см = 15 см
ответ: AB = 5 см, BC = 10 см, BF = 15 см
P.S. Рисунок показан внизу↓
ответ:А (-1, -1, -1), В (-1, 3, -1), С (-1, -1, 2)
AB=\sqrt{\big(x_B-x_A\big)^2+\big(y_B-y_A\big)^2+\big(z_B-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-(-1)\big)^2}==\sqrt{0+4^2+0}=4
CB=\sqrt{\big(x_B-x_C\Big)^2+\big(y_B-y_C\big)^2+\big(z_B-z_C\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-2\big)^2}==\sqrt{0+16+9}=5
AC=\sqrt{\big(x_C-x_A\big)^2+\big(y_C-y_A\big)^2+\big(z_C-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(-1-(-1)\big)^2+\big(2-(-1)\big)^2}==\sqrt{0+0+3^2}=3
P_{\Delta ABC}=AB+CB+AC=4+5+3=12boxed{\boldsymbol{P_{\Delta ABC}=12}}
Объяснение: