3. Какие ткани относятся к соединительным? 4. Назовите особенности строения эпителиальной ткани.
5. Какая ткань обеспечивает рост растений?
6. Из какой ткани состоит клубень картофеля?
7. Используя текст и рисунки параграфа, составьте схемы «Клас-
сификация растительных тканей» и «Классификация живот-
ных тканей».
8. Что такое кровь?
9. Каковы основные свойства мышечной ткани?
10. Как устроены нервные клетки?
11. Каковы особенности строения образовательной ткани расти-
тельных организмов?
12. В каких частях растения находится образовательная ткань?
13. Какая ткань обеспечивает опору тела растения и его органов?
14. Назовите ткань, по которой в растениях передвигаются вода,
Минеральные соли и органические вещества.
15. Как особенности строения тканей связаны с выполняемыми
ими функциями?
6. Какое значение для многоклеточного организма имеет специа-
лизация клеток?
Только ответы без решения правилами Сервиса давать не разрешается.
1)В прямоугольном параллепипеде стороны основания равны 12см и 16см,а периметр диагонального сечения равен 70см.
Найти диагональ параллепипеда.
Периметр диагонального сечения = сумма двух диагоналей и двух высот.
Диагональ d основания находим по т.Пифагора:
d=√(12²+16²)=20 см
Высоту Н параллелепипеда найдем из периметра диагонального сечения:
2d+2Н=70 см
2Н=70-40=30 см
Н=30:2=15 см
Диагональ D параллелепипеда - это диагональ прямоугольника - даигональ сечения.
D=√(H²+d²)=25 см
2)Найти площадь поверхности правильной четырехугольной пирамиды, высота которой равна 15дм, а апофема 17дм
В основании этой пирамиды - квадрат.
В него можно вписать окружность,
радиус ее равен половине стороны квадрата и перпендикулярен стороне основания, касается её в точке основания апофемы.
Центр вписанной окружности - основание высоты пирамиды.
Треугольник, образованный высотой, апофемой и радиусом вписанной окружности - прямоугольный, где апофема - гипотенуза.
r=√(17²-15²)=8
Сторона квадрата =2r=16 см
Площадь поверхности правильной четырехугольной пирамиды -
сумма площадей основания и боковой поверхности.
Площадь основания
Sосн=16²=256 дм²
Sбок=Р*апофема:2=64*17:2=544 дм²
Sполн=256+544=800 дм²
Назовем треугольник АВС. Центр описанной около треугольника окружности О лежит на пересечении серединных перпендикуляров АА1, ВВ1 и СС1. Рассмотрим треугольник АОВ1: угол ОАВ1=60/2=30. Тогда ОВ1 – катет, лежащий против угла в 30 градусов, значит АО=2ОВ1. Примем ОВ1 за х. АВ1=АС/2=5 корня из 3/2. Тогда:
АО^2-OB1^2=AB1^2
(2х)^2-х^2=(5 корня из 3/2)^2. Отсюда х=2,5=ОВ1; АО=2*2,5=5=r
Пусть О1 – центр шара. Рассмотрим треугольник ОАО1:
О1А^2=AO^2+OO1^2=5^2+12^2=25+144=169; О1А=13
S=4*пи*R^2=4*пи*О1А^2=4*3,14*13^2=2122,64