3. Куб рассечен плоскостью, проходящий через середины двух смежных сторон нижнего основания и центр верхнего основания. Как называется многоугольник, полученный в сечении? Сделайте рисунок и отметьте равные стороны этого многоугольника.
От противного: Пусть плоскость бета не пересекает прямую а, тогда эта прямая параллельна плоскости бета, следовательно в плоскости бета найдется прямая b, параллельная прямой а. Так как плоскость альфа параллельна плоскости бета, а прямая b лежит в плоскости бета, то в плоскости альфа найдется прямая d, параллельная прямой b. Так как прямая а пересекает плоскость альфа, то эта прямая не параллельна прямой d. Имеем три прямых: a||b, b||d, но a не параллельна d. Получили противоречие, которое доказывает, что бета пересекает прямую а.
От противного: Пусть плоскость бета не пересекает прямую а, тогда эта прямая параллельна плоскости бета, следовательно в плоскости бета найдется прямая b, параллельная прямой а. Так как плоскость альфа параллельна плоскости бета, а прямая b лежит в плоскости бета, то в плоскости альфа найдется прямая d, параллельная прямой b. Так как прямая а пересекает плоскость альфа, то эта прямая не параллельна прямой d. Имеем три прямых: a||b, b||d, но a не параллельна d. Получили противоречие, которое доказывает, что бета пересекает прямую а.
Рисунок: рисуем тетраэдр ABCD; дано:АВ=с,ВС=а, AD=m
1) Рассмотрим треугольник DAB-прямоугольный, угол А=90 градусов т.к. AD перпендикулярен ACB; BD^{2}=AD^{2}+AB^{2}; BD= квадратный корень из (m^{2}+c^{2});
2) Рассмотрим треугольник ABС- прямоугольный по условию АС^{2}+СВ^{2}=АВ^{2}, АС^{2}=АВ^{2}-СВ^{2}; АС= квадратный корень из(c^{2}-a^{2});
Рассмотрим треугольник DAС-прямоугольный, угол А=90 градусов т.к. AD перпендикулярен ACB; DС^{2}=АС^{2}+AD^{2}; DС= квадратный корень из (c^{2}-a^{2}+ m^{2}).
ответ: BD= квадратный корень из (m^{2}+c^{2}) ; DС= квадратный корень из (c^{2}-a^{2}+ m^{2})