3. Медиана AM треугольника ABC с периметром 20 см делится на два треугольника. Периметр треугольника ABM равен 13, а периметр треугольника AMS равен 12 см. Какова средняя продолжительность AM?
Центр правильного треугольника - это центр описанной и вписанной окружности, и расположен он в точке пересечения высот (медиан, биссектрис).
Т.к. все высоты правильного треугольника равны между собой, эта точка делит каждую высоту ( медиану) этого треугольника по свойству медиан в отношении 2:1, считая от вершины , т.е.
АО=ВО=СО,
.Эти отрезки - проекции наклонных МА, МВ, МС
Поскольку проекции равны, то и наклонные равны. Т.е.
МА=МВ=МС
МА по т. Пифагора
МА=√ (АО²+МО²)
АО - радиус описанной окружности и может быть найден по формуле
R=a/√3
или найти длину высоты данного правильного треугольника, и 2 ее трети и будут проекциями наклонных , т.е. равны АО.
я бы пошёл таким путём: очевидно, что треугольник МАС прямоугольный, причём катеты у него 5 и 12 откуда мы можем найти угол МСА (по теореме синусов, хотя бы) теперь рассмотрим треугольник ЕОС (О - центр окружности) он равнобедренный со сторонами ОЕ и ОС по 6 можем найти его углы ЕСО = МСА СЕО = ЕСО = МСА ЕОС = 180 - 2*МСА теперь рассмотрим треугольник ЕОА он тоже равнобедренный со сторонами ЕО и АО по 6 и угол ЕОА = 180 - ЕОС = 180 - 180 - (-2*МСА) = 2*МСА теперь мы знаем две стороны (по 6) и угол между ними (ЕОА = 2*МСА) по теореме косинусов можем найти противоположную сторону АЕ всё
Центр правильного треугольника - это центр описанной и вписанной окружности, и расположен он в точке пересечения высот (медиан, биссектрис).
Т.к. все высоты правильного треугольника равны между собой, эта точка делит каждую высоту ( медиану) этого треугольника по свойству медиан в отношении 2:1, считая от вершины , т.е.
АО=ВО=СО,
.Эти отрезки - проекции наклонных МА, МВ, МС
Поскольку проекции равны, то и наклонные равны. Т.е.
МА=МВ=МС
МА по т. Пифагора
МА=√ (АО²+МО²)
АО - радиус описанной окружности и может быть найден по формуле
R=a/√3
или найти длину высоты данного правильного треугольника, и 2 ее трети и будут проекциями наклонных , т.е. равны АО.
h=a√3):2=6√3):2=3√3
AO=3√3):3)·2=2√3
МА=√(АО² + МО²)=√(12+4)=4 см
я бы пошёл таким путём:
очевидно, что треугольник МАС прямоугольный, причём катеты у него 5 и 12
откуда мы можем найти угол МСА (по теореме синусов, хотя бы)
теперь рассмотрим треугольник ЕОС (О - центр окружности)
он равнобедренный со сторонами ОЕ и ОС по 6
можем найти его углы
ЕСО = МСА
СЕО = ЕСО = МСА
ЕОС = 180 - 2*МСА
теперь рассмотрим треугольник ЕОА
он тоже равнобедренный со сторонами ЕО и АО по 6
и угол ЕОА = 180 - ЕОС = 180 - 180 - (-2*МСА) = 2*МСА
теперь мы знаем две стороны (по 6) и угол между ними (ЕОА = 2*МСА)
по теореме косинусов можем найти противоположную сторону АЕ
всё