Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
Обозначим катеты треугольника АС = СВ = х.
По теореме Пифагора составим уравнение:
АС² + ВС² = АВ²
x² + x² = (5√2)²
2x² = 50
x² = 25
x = 5 см
ВС = 5 см
2. Так же, как и в первой задаче, треугольник равнобедренный.
Тогда ВС = АС = 10 см.
3. В прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы.
Пусть ВС = х, тогда АВ = 2х.
По теореме Пифагора составим уравнение:
АС² + ВС² = АВ²
12² + x² = (2x)²
144 + x² = 4x²
3x² = 144
x² = 48
x = √48 = 4√3 см
АВ = 2х = 8√3 см