4. докажите равенство треугольников аве и dсе на рисунке, если af = fd, / a = / d. доказательство:
5. в равнобедренном треугольнике авс с осноканием ас проведена биссектриса bd, abd = 370 ас = 25 см. найдите в, bdc и dc. решение: labd-3y bd, и ответ:
Ребро (высота) данной призмы ВВ1=√(АВ1^2-AB^2)= √(10^2-6^2)= √(100-36)= √64=8 см.
Площадь боковой поверхности призмы равна S(б)=P*h (где P – периметр основания призмы, h – высота призмы)
Так как призма правильная то:
P=3a (где а – сторона треугольника)
Р=3*6=18 см
S(б)=18*8=144 кв. см.
Полная площадь призмы равна S=S(б)+2S(ос) (где S(ос) – площадь основания). Площадь правильного треугольника (площадь основания) находим по формуле S= (√3*a^2)/4
S= (√3*6^2)/4=(√3*36)/4=9√3 см
S=144+2*9√3=144+18√3 см
Можно так: S=144+2*15.59= (приблизительно) 175.18 см.
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см