Обозначим треугольник АВС(смотри рисунок). Проведём радиусы О1М и О2К к боковой стороне. Треугольники О1МС и О1ДС равны по катету равному R1 и гобщей гипотенузе О1С. Аналогично равны треугольники О2ДС и О2СК. Отсюда МС=6 и СК=6. Также будут равны О1СМ=О1СД=угол1 и О2СД и О2СК=угол 2. Но угол1+угол1+угол2+угол2=180 или 2(угол1+угол2)=180. Отсюда угол1+угол2=90. А это есть угол О1СО2. То есть треугольник О1СО2-прямоугольный. По теореме Пифагора находим R1=4,5. Кстати для заданных условий угол О1СО2 всегда будет равен 90 градусов при любых R1 и R2.
Пусть дана окружность радиуса R с центром в точке О и внутри её точка N. Вычертим отдельно условный равнобедренный треугольник ОАВ и на стороне АВ точка N. ОА и ОВ - это радиусы. Проведём отрезок ОN, равный расстоянию d от центра до точки N. Из центра опустим перпендикуляр Оh на сторону АВ. По условию задания АN:ВN = 3:4. Примем коэффициент пропорциональности за х. Тогда АN = 3х, а ВN = 4х. Перпендикуляр Оh делит АВ пополам. Составляем уравнения из треугольников ONA и ОhN. Оh² = R²-(3.5x)² = R²-12,25x². Oh² = d²-(0,5x)² = d²-0,25x², отсюда вытекает R²-12,25x² = d²-0,25x². Приведём подобные: 12x² = R²-d². Находим коэффициент х =√((R²-d²)/12) = √(R²-d²)/2√3. Можно определить длину отрезка АN = 3x = 3√(R²-d²)/2√3 = √(3(R²-d²))/2. Теперь в треугольнике OAN известны 3 стороны, поэтому находим по теореме косинусов косинус угла AON, а по нему и сам угол.
ответ: от отрезка ON откладываем найденный угол AON, проводим радиус ОА и через точки A и N проводим искомую хорду АВ.
Вычертим отдельно условный равнобедренный треугольник ОАВ и на стороне АВ точка N. ОА и ОВ - это радиусы.
Проведём отрезок ОN, равный расстоянию d от центра до точки N.
Из центра опустим перпендикуляр Оh на сторону АВ.
По условию задания АN:ВN = 3:4. Примем коэффициент пропорциональности за х.
Тогда АN = 3х, а ВN = 4х. Перпендикуляр Оh делит АВ пополам.
Составляем уравнения из треугольников ONA и ОhN.
Оh² = R²-(3.5x)² = R²-12,25x².
Oh² = d²-(0,5x)² = d²-0,25x², отсюда вытекает R²-12,25x² = d²-0,25x².
Приведём подобные: 12x² = R²-d².
Находим коэффициент х =√((R²-d²)/12) = √(R²-d²)/2√3.
Можно определить длину отрезка АN = 3x = 3√(R²-d²)/2√3 = √(3(R²-d²))/2.
Теперь в треугольнике OAN известны 3 стороны, поэтому находим по теореме косинусов косинус угла AON, а по нему и сам угол.
ответ: от отрезка ON откладываем найденный угол AON, проводим радиус ОА и через точки A и N проводим искомую хорду АВ.