Если острый угол ромба 60 градусов ,то он своей малой диагональю разбивается на два равносторонних треугольника.Тогда его малая диагональ = 4 см.Диагонали ромба перпендикулярны и делятся в точке пересечения пополам.Рассмотрим прямоугольный треугольник АОВ, уголАОВ=90,АВ=4, ОВ=2 (как половина от малой диагонали ВД).По теореме Пифагора АО=square 12 (кв.корень из 12)=2*square3. Высота ОК этого треугольника, опущенная из точки О равна (АО*ОВ)/АВ (по свойству такой высоты),значит ОК=2*2*square3/4=square3. Так как стороны ромба равноудалены от точки М, то эта точка проектируется в центр окружности, вписанной в ромб.Радиусом этой окружности будет как раз высота ОК. Из прямоугольного треугольника МОК найдем ОМ.Длина перпендикуляра ОМ и есть расстояние от точки М до плоскости ромба. По теореме Пифагора ОМ=square(MK^2-OK^2)=square(25-3)=square22.
ответ: 1 сторона равна 18 см, 2 сторона 12.7 см, а 3 сторона 17.3 см.
или
е довольно таки если угол Д=30⁰, а гипотенуза ΔАСД 24 см, то сторона АС в данном треугольнике равна половине гипотенузы, т.е. АС=½АД=24/2=12 см. Сторона АС в Δ АВС является гипотенузой, а угол ВАС равен 90-60=30⁰ ( поясняю: треугольник АСД прямоугольный, угол Д по условию 30⁰, значит угол САД равен 90-30=60⁰. Угол А по условию 90⁰, а высота АС делит его на 2 угла, один из которых 60⁰), значит ВС=½АС=12/2=6см. ответ:6 см
Если острый угол ромба 60 градусов ,то он своей малой диагональю разбивается на два равносторонних треугольника.Тогда его малая диагональ = 4 см.Диагонали ромба перпендикулярны и делятся в точке пересечения пополам.Рассмотрим прямоугольный треугольник АОВ, уголАОВ=90,АВ=4, ОВ=2 (как половина от малой диагонали ВД).По теореме Пифагора АО=square 12 (кв.корень из 12)=2*square3. Высота ОК этого треугольника, опущенная из точки О равна (АО*ОВ)/АВ (по свойству такой высоты),значит ОК=2*2*square3/4=square3. Так как стороны ромба равноудалены от точки М, то эта точка проектируется в центр окружности, вписанной в ромб.Радиусом этой окружности будет как раз высота ОК. Из прямоугольного треугольника МОК найдем ОМ.Длина перпендикуляра ОМ и есть расстояние от точки М до плоскости ромба. По теореме Пифагора ОМ=square(MK^2-OK^2)=square(25-3)=square22.
Объяснение:
26 - 2*5 = 16 (cм) - длина сторон-оснований.
16/2 = 8 (см) - длина средней линии.
или
48-18=30
30-4.6=25.4
25.4:2=12.7
12.7+4.6=17.3
ответ: 1 сторона равна 18 см, 2 сторона 12.7 см, а 3 сторона 17.3 см.
или
е довольно таки если угол Д=30⁰, а гипотенуза ΔАСД 24 см, то сторона АС в данном треугольнике равна половине гипотенузы, т.е. АС=½АД=24/2=12 см. Сторона АС в Δ АВС является гипотенузой, а угол ВАС равен 90-60=30⁰ ( поясняю: треугольник АСД прямоугольный, угол Д по условию 30⁰, значит угол САД равен 90-30=60⁰. Угол А по условию 90⁰, а высота АС делит его на 2 угла, один из которых 60⁰), значит ВС=½АС=12/2=6см. ответ:6 см
Объяснение: