4. В прямоугольном параллелепипеде ABCDA1B1C1D1 построй-
те сечение, проходящее через вершины А, В, С.
Поясните свои рассуждения
5. ABCDA1B1C1D1 — куб, P принадлежит DD1; K принадлежит B1C1.
Постройте точки пересечения прямых:
а) А. Реплоскостью ABC,
б) СК с плоскостью ABB1,
Надо воспользоваться теоремой Пифагора для одного из боковых треугольников(теорема Пифагора- Квадрат гипотенузы равен сумме квадратов катетов). Но нам известен только один катет треугольника, поэтому необходимо найти второй: по рисунку видно, что две высоты вместе с верхним основанием образовывают прямоугольник. По свойству прямоугольника, его противоположные стороны равны между собой, поэтому часть нижнего основания равна 6 см. Помимо этой части есть ещё два одинаковых катета от двух одинаковых треугольников. Чтобы вычислить один катет, нам надо из всего нижнего основания вычесть известную часть 6 см, поучится 10 см, а поскольку у нас два одинаковых катета, нам просто нужно 10 см разделить на 2, равно 5 см- второй катет треугольника.
Применяем теорему Пифагора h^2=AD^2-DE^2, откуда h=корень(13^2-5^2) h=12 см( мы нашли высоту трапеции)
Ну наконец! Последнее действие: применяем формулу для нахождения площади равнобедренной трапеции S=(AB+CD)*h/2
S=(6 см+16 см)*12 см/2=132 см*2
Решение:
1)16-6=10 см
2)10/2=5 см
3)h^2=AD^2-DE^2=(т.Пифагора)
4)S=(AB+CD)*h/2=(6 см+16 см)*12 см/2=132 см^2
ответ: S трапеции=132 см^2
Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины.
ВО:ОК=2:1
SO:ON=2:1
В равностороннем треугольнике медианы равны. Следовательно, равны и их сходственные отрезки.
В ∆ DOK и ∆ BON равны две стороны и углы между ними при вершине О как вертикальные. Следовательно, эти треугольники равны по первому признаку.
--------
∆ DOK и ∆ BON равны и по 3-му признаку, т.к. у равных сторон равны и их половины.
А, поскольку медианы являются здесь и биссектрисами и высотами, то можно доказать их равенство и по второму признаку.