4. в треугольнике авс, ав = ас. медиана к боковой стороне делит высоту, проведённую к основанию, на отрезки, больший из которых равен 6. найдите длину этой высоты.
1.Проведем в плоскости α прямую а’ перпендикулярно плоскости β. Две прямые, перпендикулярные одной и той же плоскости, параллельны, следовательно, а' ║а.
Если прямая вне плоскости параллельна какой нибудь прямой на ней, то эта прямая параллельна и самой плоскости. Отсюда следует, что если плоскости α и β взаимно перпендикулярны, то прямая, проведенная перпендикулярно плоскости β, параллельна плоскости α или принадлежит ей.
Если две плоскости взаимно перпендикулярны, то прямая, проведенная в одной плоскости перпендикулярно к линии пересечения плоскостей, перпендикулярна к другой плоскости. АD ⊥ АВ (стороны квадрата). ⇒
АD перпендикулярна плоскости треугольника АВМ.
Если прямая перпендикулярна плоскости, то она перпендикулярна каждой прямой, которая лежит в этой плоскости и проходит через точку пересечения.
DA перпендикулярна плоскости ∆ АВМ, следовательно, перпендикулярна МА. Угол DАМ=90°
Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Объяснение:
1.Проведем в плоскости α прямую а’ перпендикулярно плоскости β. Две прямые, перпендикулярные одной и той же плоскости, параллельны, следовательно, а' ║а.
Если прямая вне плоскости параллельна какой нибудь прямой на ней, то эта прямая параллельна и самой плоскости. Отсюда следует, что если плоскости α и β взаимно перпендикулярны, то прямая, проведенная перпендикулярно плоскости β, параллельна плоскости α или принадлежит ей.
2.По условию плоскость АВСD перпендикулярна плоскости ∆АВМ.
Если две плоскости взаимно перпендикулярны, то прямая, проведенная в одной плоскости перпендикулярно к линии пересечения плоскостей, перпендикулярна к другой плоскости. АD ⊥ АВ (стороны квадрата). ⇒
АD перпендикулярна плоскости треугольника АВМ.
Если прямая перпендикулярна плоскости, то она перпендикулярна каждой прямой, которая лежит в этой плоскости и проходит через точку пересечения.
DA перпендикулярна плоскости ∆ АВМ, следовательно, перпендикулярна МА. Угол DАМ=90°
Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Р=4+8+2·5=22см