Сначала разберёмся что такое равновеликая и равносоставленная фигура. Равновеликими называются те фигуры, которые равны по площади. Равносоставленные фигуры - это фигуры, которые можно разрезать на одинаковое число попарно равных фигур. Пример равносоставленных фигур смотрите на рис 1.1 и рис 1.2
Приступим к решению:
а) Пусть длина начального прямоугольника а₁, ширина b₁, тогда площадь- S₁. Тогда длина второго прямоугольника а₂, ширина b₂, площадь- S₂. По определению равновеликих фигур можем записать, что их площади равны, и каждая из которых равно произведению длины и ширины:
ответ: ширина второго прямоугольника равна 9 см.
б) Теорема гласит, что любые два равновеликих многоугольника равносоставлены. Но в нашем случае есть и другое условие, а именно: прямоугольники разделили на два треугольника диагональю (см рис 1.3). Полученные треугольники попарно неравные, следовательно равносоставленными их назвать нельзя.
Интересно, где Вы учитесь, если такие задачи задают. Вот решение этой задачи без теории (вывод формул ищите в учебнике или в записях занятий) Мне не нравится обозначение радиусов, я их буду обозначать r1, r2, r3; Окружность, вписанная в исходный треугольник (её радиус я обозначу просто r), является вневписанной для каждого из трех отсеченных. Если построить вневписанные окружности к исходному треугольнику, с радиусами ρ1, ρ2, ρ3; то очевидно (в силу подобия отсеченных треугольников исходному) будут выполнены пропорции ρ1/r = r/r1; и то же самое для двух других. то есть ρ1 = r^2/r1; ρ2 = r^2/r2; ρ3 = r^2/r3; Остается подставить это в известные соотношения 1/r = 1/ρ1 + 1/ρ2 + 1/ρ3; то есть r = r1 + r2 + r3; и 4R = ρ1 + ρ2 + ρ3 - r; где R - радиус описанной окружности. то есть 4R = r^2*(1/r1 + 1/r2 + 1/r3 - 1/r); r = r1 + r2 + r3; это все. Я бы конечно мог привести вывод этих формул, но Вам бы никогда не задали эту задачу, если бы не выводили их на занятиях. К примеру, площадь S исходного треугольника равна S = (p - a)*ρ1 = (p - b)*ρ2 = (p - c)*ρ3 = p*r; откуда 1/ρ1 + 1/ρ2 + 1/ρ3 = (p - a)/S + (p - b)/S + ( p - c)/2 = (3p - a - b - c)/S = p/S = 1/r; Вывод формулы для R намного сложнее технически, но по сути - то же самое.
а) 9см б) нет
Пошаговое объяснение:
Сначала разберёмся что такое равновеликая и равносоставленная фигура. Равновеликими называются те фигуры, которые равны по площади. Равносоставленные фигуры - это фигуры, которые можно разрезать на одинаковое число попарно равных фигур. Пример равносоставленных фигур смотрите на рис 1.1 и рис 1.2
Приступим к решению:
а) Пусть длина начального прямоугольника а₁, ширина b₁, тогда площадь- S₁. Тогда длина второго прямоугольника а₂, ширина b₂, площадь- S₂. По определению равновеликих фигур можем записать, что их площади равны, и каждая из которых равно произведению длины и ширины:
ответ: ширина второго прямоугольника равна 9 см.
б) Теорема гласит, что любые два равновеликих многоугольника равносоставлены. Но в нашем случае есть и другое условие, а именно: прямоугольники разделили на два треугольника диагональю (см рис 1.3). Полученные треугольники попарно неравные, следовательно равносоставленными их назвать нельзя.
ответ: нет.
Лучший ответ
Мне не нравится обозначение радиусов, я их буду обозначать r1, r2, r3;
Окружность, вписанная в исходный треугольник (её радиус я обозначу просто r), является вневписанной для каждого из трех отсеченных. Если построить вневписанные окружности к исходному треугольнику, с радиусами ρ1, ρ2, ρ3; то очевидно (в силу подобия отсеченных треугольников исходному) будут выполнены пропорции
ρ1/r = r/r1; и то же самое для двух других.
то есть ρ1 = r^2/r1; ρ2 = r^2/r2; ρ3 = r^2/r3;
Остается подставить это в известные соотношения
1/r = 1/ρ1 + 1/ρ2 + 1/ρ3; то есть r = r1 + r2 + r3;
и
4R = ρ1 + ρ2 + ρ3 - r; где R - радиус описанной окружности.
то есть 4R = r^2*(1/r1 + 1/r2 + 1/r3 - 1/r); r = r1 + r2 + r3;
это все.
Я бы конечно мог привести вывод этих формул, но Вам бы никогда не задали эту задачу, если бы не выводили их на занятиях.
К примеру, площадь S исходного треугольника равна
S = (p - a)*ρ1 = (p - b)*ρ2 = (p - c)*ρ3 = p*r; откуда
1/ρ1 + 1/ρ2 + 1/ρ3 = (p - a)/S + (p - b)/S + ( p - c)/2 = (3p - a - b - c)/S = p/S = 1/r;
Вывод формулы для R намного сложнее технически, но по сути - то же самое.