Проведём осевое сечение через ребро SA и апофему SД. Получим треугольник ASД с высотой SО. Основание АД этого треугольника является высотой и медианой h основания пирамиды АВС. Так как ребро SA наклонено под углом 45° к основанию, то отрезок АО (он равен 2/3 АД) равен высоте SО пирамиды. Отрезок ОД равен 1/3 АД. Тогда тангенс угла SДA равен: tgβ = (2/3)/(1/3) = 2. Синус этого угла равен: sinβ = tgβ/(√(1+tg²β) = 2/√(1+2²) = 2/√5. Угол SДA равен arc tg 2 = 1,107149 радиан = 63,43495°. Угол АSД равен 180°- 45°- 63,43495° = 71,56505°. Воспользуемся теоремой синусов для определения АД. Синус АSД равен 0,948683. Тогда АД = (SД/sin 45°)*sin АSД = (√15/(1/√2))*0,948683 = = 5,196152 дм. Сторона основания пирамиды а =АД/cos30° = = 5,196152/(√3/2) = 6 дм. Площадь основания So = a²√3/4 = 36√3/4 = 9√3 дм². Высота пирамиды H = SO = (2/3)*АД = (2/3)*5,196152 = = 3,464102 = 2√3 дм. Объём пирамиды равен: V = (1/3)So*H = (1/3)*9√3* 2√3 = 18 дм³.
Получим треугольник ASД с высотой SО.
Основание АД этого треугольника является высотой и медианой h основания пирамиды АВС.
Так как ребро SA наклонено под углом 45° к основанию, то отрезок АО (он равен 2/3 АД) равен высоте SО пирамиды.
Отрезок ОД равен 1/3 АД.
Тогда тангенс угла SДA равен: tgβ = (2/3)/(1/3) = 2.
Синус этого угла равен:
sinβ = tgβ/(√(1+tg²β) = 2/√(1+2²) = 2/√5.
Угол SДA равен arc tg 2 = 1,107149 радиан = 63,43495°.
Угол АSД равен 180°- 45°- 63,43495° = 71,56505°.
Воспользуемся теоремой синусов для определения АД.
Синус АSД равен 0,948683.
Тогда АД = (SД/sin 45°)*sin АSД = (√15/(1/√2))*0,948683 =
= 5,196152 дм.
Сторона основания пирамиды а =АД/cos30° =
= 5,196152/(√3/2) = 6 дм.
Площадь основания So = a²√3/4 = 36√3/4 = 9√3 дм².
Высота пирамиды H = SO = (2/3)*АД = (2/3)*5,196152 =
= 3,464102 = 2√3 дм.
Объём пирамиды равен:
V = (1/3)So*H = (1/3)*9√3* 2√3 = 18 дм³.
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4