Сначала ужно написать уравнение прямой, проходящей через точки А и В. Найти середину отрезка АВ. Через эту точку провести прямую, перепендикулярную АВ. Все точки этой прямой будут находится на равном расстоянии от точек А и В. 1) Напишем уравнение прямой, проходящей чнрез точки А и В; у=к*х+в; 2=к*4+в; в=2-4к (1); 7=к*6+в; в=7-6к (2); 2-4к=7-6к; 2к=5; к=2,5; в=7-6*2,5=-8; у=2,5х-8; угловой коэффициент равен к=2,5; 2) координаты точки середины отрезка АВ равны ((4+6)/2; (2+7)/2)=(5;4,5); 3) угловые коэффициенты перпендикулярных прямых обратны по величине и противоположны по знаку. Угловой коэффициент искомой прямой равен к1=-1/к=-1/2,5=-0,4; Уравнение прямой проходящей через точку (5;4,5) перпендикулярно к прямой у=2,5х-8: 4,5=5*(-0,4)+в; в=4,5+2=6,5; у=-0,4х+6,5; 0,4х+у-6,5=0;
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Сначала ужно написать уравнение прямой, проходящей через точки А и В. Найти середину отрезка АВ. Через эту точку провести прямую, перепендикулярную АВ. Все точки этой прямой будут находится на равном расстоянии от точек А и В. 1) Напишем уравнение прямой, проходящей чнрез точки А и В; у=к*х+в; 2=к*4+в; в=2-4к (1); 7=к*6+в; в=7-6к (2); 2-4к=7-6к; 2к=5; к=2,5; в=7-6*2,5=-8; у=2,5х-8; угловой коэффициент равен к=2,5; 2) координаты точки середины отрезка АВ равны ((4+6)/2; (2+7)/2)=(5;4,5); 3) угловые коэффициенты перпендикулярных прямых обратны по величине и противоположны по знаку. Угловой коэффициент искомой прямой равен к1=-1/к=-1/2,5=-0,4; Уравнение прямой проходящей через точку (5;4,5) перпендикулярно к прямой у=2,5х-8: 4,5=5*(-0,4)+в; в=4,5+2=6,5; у=-0,4х+6,5; 0,4х+у-6,5=0;
Объяснение:
мне дали 5®
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²