5. Используя источники информационно-коммуникационных тех- нологий (ИКТ), запишите радиус Луны. Вычислите длину эква- тора Луны в километрах (ответ округлите до тысяч).
1)периметр ромба АВСД равен АВ+АД+ДС+ВС=24 см, т.к. у ромба все стороны равны,из этого следует что ВА=АД=ДС=ВС= 24:4= 6см 2)если в прямоугольном треугольнике (ВАО, при ВО- перпендикуляре к АД) катед (ВО равен 3см) в два раза меньше гипотенузы (ВА равной 6 см) то этот катед лежит на против угла равного 30' (угол ВАО равен 30 градусов) 3)Проведем диогональ ромба АС 4)Диогональ ромба является биссектрисой обойх внутренних углов ромба,через которые она проходит, из этого следует что угол ВАС =угол САД=30 градусов :2= 15 градусов и равен углу ВСА и углу АСД 5)треугольник ВАС: угол АВС +угол ВАС+ угол АСБ = 180 градусов, из этого следует что угол АВС=180градусов -(15+15)=150 градусов.
Диагонали квадрата пересекаются под прямым углом и при пересечении делятся пополам.
∆ ВОС в основании - прямоугольный равнобедренный.
МН⊥ВС. ⇒ по т. о 3-х перпендикулярах ОН ⊥ ВС, ⇒ ОН — высота и медиана ∆ ВОС. По свойству медианы ОН=BH=CH.
ОН=√(МН²-МО²)=√(225-144)=√81=9
BH=OH=9
MB=√(MH²+BH²)=√(225+81)=√306=3√34
№2
Если боковые ребра пирамиды равны, то равны и их проекции. Тогда проекции боковых ребер равны радиусу описанной около основания окружности. Для прямоугольного треугольника радиус описанной окружности равен половине гипотенузы ( значит, равен и медиане).
Гипотенуза прямоугольного треугольника с катетами 6 см и 8 см равна 10 см (египетский треугольник).
Тогда высота МН ( и медиана ) ∆ АМВ=АВ=10 см. ВН=АН=5 см
АМ= √(MH²+AH²)=√(100+25)=5√5 см
№3.
В основании пирамиды равнобедренный прямоугольный треугольник АВС, угол С=90°, АС=ВС=6 см. Высота пирамиды - третье из смежных ребер=8 см.
Площадь полной поверхности - сумма площади основания и площадей боковых граней.
S осн=АС•BC:2=18 см²
Грани АМС=ВМС по равенству катетов.
S ∆ AMC=S ∆ BMC=6•8:2=24 см²
S AMB=MH•AB:2
AB=AC:sin45°=6√2
CH высота и медиана ∆ АСВ=АВ:2=3√2
Высота MH большей боковой грани S=√(CH*+MH*)=√(18+64)=√82
S∆AMB=6√2•√82=6√164=12√41
S полн=18+2•24+12√41=(66+12√41) см²
№4
S полн=Sбок+Sосн
Боковые грани этой правильной пирамиды равны. Обозначим её МАВС.
МН- высота и медиана боковой грани. АН=ВН=6 см
∆ АМВ - равнобедренный. Апофема МН=√( АМ²-АН²)=√64=8 см
Sбок=3•МН•АВ:2=144 см²
Sосн=АВ²•√3:4=36√3 см²
Sполн=144+36√3=36(4+√3) см²
№5
Параллелепипед прямоугольный, следовательно, основание и боковые грани прямоугольники, а ребра перпендикулярны основанию и являются высотами параллелепипеда.
Обозначим большую сторону основания АВ, меньшую - ВС, высоту АА1.
Угол А1ВА=60° (дано)
А1А=АВ•tg60°=5√3
Площадь основания АВ•BC=5•3=15 Оснований два. S=2•15=30 см²
Площадь боковой пов-сти АА1•2(AB+BC)=5√3•16=80√3 см²
2)если в прямоугольном треугольнике (ВАО, при ВО- перпендикуляре к АД) катед (ВО равен 3см) в два раза меньше гипотенузы (ВА равной 6 см) то этот катед лежит на против угла равного 30' (угол ВАО равен 30 градусов)
3)Проведем диогональ ромба АС
4)Диогональ ромба является биссектрисой обойх внутренних углов ромба,через которые она проходит, из этого следует что угол ВАС =угол САД=30 градусов :2= 15 градусов и равен углу ВСА и углу АСД
5)треугольник ВАС: угол АВС +угол ВАС+ угол АСБ = 180 градусов, из этого следует что угол АВС=180градусов -(15+15)=150 градусов.
Основание правильной четырёхугольной пирамиды - квадрат, боковые грани - равнобедренные треугольники, вершина пирамиды проецируется в точку пересечения диагоналей.
Обозначим пирамиду МАВСD, МО - высота, МН - апофема ( высота боковой грани).
Апофема делит сторону основания пополам. ВН=СН.
Диагонали квадрата пересекаются под прямым углом и при пересечении делятся пополам.
∆ ВОС в основании - прямоугольный равнобедренный.
МН⊥ВС. ⇒ по т. о 3-х перпендикулярах ОН ⊥ ВС, ⇒ ОН — высота и медиана ∆ ВОС. По свойству медианы ОН=BH=CH.
ОН=√(МН²-МО²)=√(225-144)=√81=9
BH=OH=9
MB=√(MH²+BH²)=√(225+81)=√306=3√34
№2
Если боковые ребра пирамиды равны, то равны и их проекции. Тогда проекции боковых ребер равны радиусу описанной около основания окружности. Для прямоугольного треугольника радиус описанной окружности равен половине гипотенузы ( значит, равен и медиане).
Гипотенуза прямоугольного треугольника с катетами 6 см и 8 см равна 10 см (египетский треугольник).
Тогда высота МН ( и медиана ) ∆ АМВ=АВ=10 см. ВН=АН=5 см
АМ= √(MH²+AH²)=√(100+25)=5√5 см
№3.
В основании пирамиды равнобедренный прямоугольный треугольник АВС, угол С=90°, АС=ВС=6 см. Высота пирамиды - третье из смежных ребер=8 см.
Площадь полной поверхности - сумма площади основания и площадей боковых граней.
S осн=АС•BC:2=18 см²
Грани АМС=ВМС по равенству катетов.
S ∆ AMC=S ∆ BMC=6•8:2=24 см²
S AMB=MH•AB:2
AB=AC:sin45°=6√2
CH высота и медиана ∆ АСВ=АВ:2=3√2
Высота MH большей боковой грани S=√(CH*+MH*)=√(18+64)=√82
S∆AMB=6√2•√82=6√164=12√41
S полн=18+2•24+12√41=(66+12√41) см²
№4
S полн=Sбок+Sосн
Боковые грани этой правильной пирамиды равны. Обозначим её МАВС.
МН- высота и медиана боковой грани. АН=ВН=6 см
∆ АМВ - равнобедренный. Апофема МН=√( АМ²-АН²)=√64=8 см
Sбок=3•МН•АВ:2=144 см²
Sосн=АВ²•√3:4=36√3 см²
Sполн=144+36√3=36(4+√3) см²
№5
Параллелепипед прямоугольный, следовательно, основание и боковые грани прямоугольники, а ребра перпендикулярны основанию и являются высотами параллелепипеда.
Обозначим большую сторону основания АВ, меньшую - ВС, высоту АА1.
Угол А1ВА=60° (дано)
А1А=АВ•tg60°=5√3
Площадь основания АВ•BC=5•3=15 Оснований два. S=2•15=30 см²
Площадь боковой пов-сти АА1•2(AB+BC)=5√3•16=80√3 см²
Sполн=(30+80√3) см²