1) угол между векторами АВ и АД равен 180-40=140. 2) угол между векторами АВ и ДА равен 40, если отложить ветор DA от точки А, то полученный угол накрест лежащий с углом АВС. 3) угол между векторами АВ и СД равен 180, векторы АВ и СД противоположные. 4) угол между векторами АВ и АС равен 70, т к АС диагональ ромба и делит угол 140 пополам. 5) угол между векторами СВ и ВД равен 160, если отложить ветор СВ от точки В, то полученный угол между векторами равен 140+20=160 (диагональ BD делит угол 40 пополам). 6) угол между векторами АС и ВД равен 90, т к диагонали ромба перпендикулярны. 7) угол между векторами АД и ВС равен 0, т к векторы АД и ВС сонаправлены.
Соединим центр правильного многоугольника с вершинами. ΔАОВ - один из образовавшихся треугольников. Проведем в нем высоту ОН.
Тогда ОА = ОВ = R = 8, радиус описанной окружности,
OH = r = 4√3, радиус вписанной окружности для многоугольника.
∠АОВ = 360° / n, где n - количество сторон многоугольника, тогда
α = ∠АОВ / 2 = 180°/n.
Из прямоугольного треугольника АОН:
cosα = r / R = 4√3 / 8 = √3/2, ⇒
α = 30°
180° / n = 30°
n = 6
Т.е. это правильный шестиугольник.
А в правильном шестиугольнике сторона равна радиусу описанной окружности.
ответ: 8.
2) угол между векторами АВ и ДА равен 40, если отложить ветор DA от точки А, то полученный угол накрест лежащий с углом АВС.
3) угол между векторами АВ и СД равен 180, векторы АВ и СД противоположные.
4) угол между векторами АВ и АС равен 70, т к АС диагональ ромба и делит угол 140 пополам.
5) угол между векторами СВ и ВД равен 160, если отложить ветор СВ от точки В, то полученный угол между векторами равен 140+20=160 (диагональ BD делит угол 40 пополам).
6) угол между векторами АС и ВД равен 90, т к диагонали ромба перпендикулярны.
7) угол между векторами АД и ВС равен 0, т к векторы АД и ВС сонаправлены.