Дано: SABC - пирамида, АВ=ВС=10см, АС=12см, боковые грани образуют с основанием углы 30 градусов. Найти: высоту SO. Построение. К основанию треугольника АВС проведем высоту ВН, которая будет являться и медианой и биссектрисой, так как треугольник равнобедренный. Отрезок SH также является высотой, так как треугольник ASC равнобедренный. Значит, угол SHB - заданный в условии двугранный угол. Высота пирамиды проецируется на основание в точку О, являющуюся центром вписанной в треугольник АВС окружности, так как все грани пирамиды наклонены к основанию под одинаковым углом. Решение: Рассмотрим прямоугольный треугольник OSH:
Неизвестным остается отрезок НО, являющийся радиусом ранее упомянутой окружности. Площадь треугольника равна половине произведения его основания на высоту, проведенную к основанию. С другой стороны площадь треугольника равна произведению его полупериметра на радиус вписанной окружности. Приравнивая эти площади, получим:
BH найдем из треугольника АВН по теореме Пифагора, учитывая, что АН - половина АС.
ответ:1-Синус острого угла прямоугольного треугольника - это отношение противолежащего катета к гипотенузе.
Косинус острого угла прямоугольного треугольника - это отношение прилежащего катета к гипотенузе.
Тангенс острого угла прямоугольного треугольника - это отношение противолежащего катета к прилежащему.
Котангенс острого угла прямоугольного треугольника - это отношение прилежащего катета к противолежащему.
а) - это 2) и 3);
b) - это 6) и 7);
c) - это 1) и 4).
2-ответ
2,0/5
8
Seyitmyradova78
Первый шел на север со
скоростью 3 км/ч,
второй шел на запад со скоростью 4 км/ч.
S = 3*4=12
S= 4*4= 16 км
S= \|12^2+16^2=\|144+256=\|400=20 км
будет расстояние
между ними через 4 часа 20 км
Объяснение:может так
Найти: высоту SO.
Построение. К основанию треугольника АВС проведем высоту ВН, которая будет являться и медианой и биссектрисой, так как треугольник равнобедренный. Отрезок SH также является высотой, так как треугольник ASC равнобедренный. Значит, угол SHB - заданный в условии двугранный угол. Высота пирамиды проецируется на основание в точку О, являющуюся центром вписанной в треугольник АВС окружности, так как все грани пирамиды наклонены к основанию под одинаковым углом.
Решение: Рассмотрим прямоугольный треугольник OSH:
Неизвестным остается отрезок НО, являющийся радиусом ранее упомянутой окружности.
Площадь треугольника равна половине произведения его основания на высоту, проведенную к основанию. С другой стороны площадь треугольника равна произведению его полупериметра на радиус вписанной окружности. Приравнивая эти площади, получим:
BH найдем из треугольника АВН по теореме Пифагора, учитывая, что АН - половина АС.
ответ: см