В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
TigerTanya
TigerTanya
25.07.2020 03:29 •  Геометрия

6. плоскость, перпендикулярная диаметру шара, делит этот диаметр на две части, равные 3 и 9. найдите объём меньшей части.

Показать ответ
Ответ:
Andreiuchenik
Andreiuchenik
14.06.2020 23:37
Диаметр делится на 2 части, равные 3 и 9, поэтому диаметр равен 12, а радиус 6.
Объем шарового сегмента:
V={1\over3}\pi h^2(3R-h)
Из условия:
h=3,\,R=6\\V={1\over3}\pi*9*(18-3)=45\pi

Если мы не знаем (не помним) формулу объема шарового сегмента, то ее можно вывести:
Пусть радиус шара R, высота шарового сегмента h. Тогда объем шарового сегмента есть интеграл от площади сечения перпендикулярной к диаметру плоскости (которое является кругом) от R-h до R:
V= \int\limits^{R}_{R-h} {\pi (R^2-x^2)} \, dx =\pi({R^2x-{x^3\over3}})\underset{R-h}{\overset{R}{|}}=\\={\pi\over3}(3R^2(R-R+h)-(R^3-(R-h)^3))=\\={\pi\over3}(3R^2h-R^3+R^3-3R^2h+3Rh^2-h^3)={\pi\over3}h^2(3R-h)

Где \pi(R^2-x^2) - площадь сечения, проходящего на расстоянии x от центра шара (x\in[-R;R])
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота