6.У рівнобедрений прямокутний трикутник вписано квадрат так, що у них спільний прямий кут. Обчисліть сторону квадрата,якщо катети трикутника дорівнюють 10 см.
.
7. У трикутнику ABC бісектриси АО і со утворюють кут 120 .Обчисліть кут В.
8.Одна з медіан трикутника 18 см. На які відрізки точка перетину медіан ділить дану медіану?
9.0бчислити кут між бісектрисами двох кутів трапеції, прилеглих до однієї бічної сторони.
10.Діагональ трапеції ділить середню лінію на відрізки 4 см і 10 см .Обчисліть основи трапеції.
11. Пона діагональ ділить середню лінію EF трапеції у відношенні 3:4, рахуючи від точки ЕУ якому
:Сказочную волщевную палочку в нашем мире не каждый может увидеть ,но каждый хрчет её иметь при себе , но помните волщебную палочку надо использовать с благим намерением , она не должна попасть в руке злову волщебнику так ,что если ты хороший тебе нечего не грозит.
Аргумент 1: Если бы у меня была бы волдебная палочка то я бы не растирялся и сразу бы начал творить добро. Я бы пожелала чтобы дети с отклонениями стали здоровыми и крепкими детьми, чтобы сироты потерявшие родителей нашли свою семью, чтобы в нашей строне не было серийных убийц и насильников, а были только хорошие люди, чтобы мои родители были здоровы, а только потом я бы пожелал ,что то для себя и то не какие небуть игрушки , а чтоб я был здоров.
Заключение: Следовательно еслибы у меня была волщебная палочка то я бы использовал не для моей собственой выгоды , а для блага во имя моей родины.
Объяснение:
Найдем S(AOB):
S(AOD):S(BOC) =16:9=k2
k=4/3
k=4/3=AO/OC
S(AOB)=0,5•BL•AO
S(BOC)=0,5•BL•OC
S(AOB)/S(BOC) =(0,5•BL•AO)/(0,5•BL•OC)=AO/OC=4/3
S(AOB)/S(BOC) =4/3
S(AOB)=4/3•S(BOC)=4/3•9=12
S(ABCD)=12+12+16+9=49
Объяснение:
Площади ∆AOB и ∆DOC равны. Так как площади ∆ABD и ∆ACD равны. У них общее основание и высоты равны.
S(AOB)=S(ABD)-S(AOD)=S(ACD)-S(AOD)=S(COD)
S(AOD)≠S(BOC)
Следовательно, у этих треугольников AD и BC основания трапеции.
∆AOD ~ ∆ BOC (углы BOC=AOD как вертикальные), а
стороны пропорциональны их отношение площадей равно квадрату коэффициента подобия k.