6. Унаслідок повороту навколо початку координат на 90° проти годинникової
стрілки точка М(2; 0) переходить у деяку точку А. Знайдіть координати цієї
точки.
7.Продовження бічних сторін АВ і СD трапеції АВСD перетинаються в точці М.
Знайдіть площу трапеції, якщо ВС : АD = 2 : 5, а площа трикутника ВМС
дорівнює 12 кв. см.
8.Задайте формулами паралельне перенесення, унаслідок якого середина відрізка
AB переходить у середину відрізка CD, якщо:
1) A(2;8), B(8;2), C(4;11), D(10;9);
2) A(-7;-3), B(-1;-5), C(2;6), D(10;8)
1) ≈71,05
Объяснение:
1) В основании у нас получается равнобедренный треугольник(две стороны - радиус одной окружности) с углом в 90° в центре окружности и высотой 2см. Т.к. треугольник равнобедренный, следует высота=биссектрисе.
Находим радиус окружности:
см
Находим высоту цилиндра:
Т.к. проведенное пересечение у нас квадрат, следует высота цилиндра равна основанию треугольника(в основании цилиндра)
Половина основания треугольника(она же половина высоты) равна
см
Следует высота равна
см
Находим площадь боковой поверхности цилиндра:
≈71,05
1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²