6. Запишите условие и заключение следующих теорем. Сформулируйте теоремы, обратные к ним и проверьте, будут ли они верны: 1) Если AC = BD на рисунке 2, то AB = CD. 2) Если Z1=22 на рисунке 3, то 23=24. 3) Если EF||AC на рисунке 4, то 21=23. 4) Если AO=OB и CO=OD на рисунке 4, то АОD=ВОС
Ой, ну это легко!) В прямоугольном треугольнике есть такое свойство: Если в прямоугольном треугольнике есть угол в 30 градусов, то катет, лежащий напротив этого угла, равен половине гипотенузы этого треугольника. Также есть признак: Если в прямоугольном треугольнике катет равен половине гипотенузы, то напротив этого катета находится угол, равный 30 градусам! Доказательство: Дано: ∆ ABC, ∠C=90º, ∠A=30º. Доказать: ВС = 1/2АВ Доказательство: 1) Так как сумма острых углов прямоугольного треугольника равна 90º, то ∠B=90º-∠A=90º-30º=60º. 2) Проведем из вершины прямого угла медиану CF. 3) Так как медиана, проведенная к гипотенузе, равна половине гипотенузы, то CF = 1/2AB, то есть, CF=AF=BF. 4) Так как BF=CF, то треугольник BFC — равнобедренный с основанием BC. Следовательно, у него углы при основании равны: ∠B=∠BCF=60º. 5) Так как сумма углов треугольника равна 180º, то в треугольнике BFC ∠BFC =180º -(∠B+∠BCF)=60º. 6)Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний. Значит, все его стороны равны и BC=CF=BF=1/2AB. ч.т.д
В прямоугольном треугольнике есть такое свойство: Если в прямоугольном треугольнике есть угол в 30 градусов, то катет, лежащий напротив этого угла, равен половине гипотенузы этого треугольника. Также есть признак: Если в прямоугольном треугольнике катет равен половине гипотенузы, то напротив этого катета находится угол, равный 30 градусам! Доказательство: Дано: ∆ ABC, ∠C=90º, ∠A=30º. Доказать: ВС = 1/2АВ Доказательство: 1) Так как сумма острых углов прямоугольного треугольника равна 90º, то ∠B=90º-∠A=90º-30º=60º. 2) Проведем из вершины прямого угла медиану CF. 3) Так как медиана, проведенная к гипотенузе, равна половине гипотенузы, то CF = 1/2AB, то есть, CF=AF=BF. 4) Так как BF=CF, то треугольник BFC — равнобедренный с основанием BC. Следовательно, у него углы при основании равны: ∠B=∠BCF=60º. 5) Так как сумма углов треугольника равна 180º, то в треугольнике BFC ∠BFC =180º -(∠B+∠BCF)=60º. 6)Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний. Значит, все его стороны равны и BC=CF=BF=1/2AB. ч.т.д
Даны вершины А(-2; 1), В(1; 4), С(5; 0) i D(2; -3).
Фигура АВСД прямоугольник, если стороны попарно равны и диагонали равны.
Длины сторон.
AB = √((xB-xA)² + (yB-yA)²) = √18 = 4,242640687
BC = √((xC-xB)² + (yC-yB)²) = √32 = 5,656854249
CD = √((xD-xC)² + (yD-yC)²) = √18 = 4,242640687
AD = √((xC-xA)² + (yC-yA)²) = √32 = 5,656854249 .
Длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = √50 = 7,071067812
BD = √((xD-xB)² + (yD-yB)²) = √50 = 7,071067812 .
Как видим, эти свойства подтверждены, АВСД - прямоугольник.