Площадь параллелограмма равна произведению сторон на синус угла между ними. Найдем синус угла. В прямоугольном треугольнике тангенс определяется как отношение противолежащего катета к прилежащему. Имеем:
тангенс \alpha= дробь, числитель — a, знаменатель — b = дробь, числитель — корень из { 2}, знаменатель — 4 .
Таким образом, a=x корень из { 2}, b=4x, где x — число.
По теореме Пифагора гипотенуза этого прямоугольного треугольника равна:
c= корень из { 2x в степени 2 плюс 16x в степени 2 }=3x корень из { 2}.
.
В прямоугольном треугольнике синус определяется как отношение противолежащего катета к гипотенузе. Имеем:
синус \alpha= дробь, числитель — a, знаменатель — c = дробь, числитель — x корень из { 2}, знаменатель — 3x корень из { 2 }= дробь, числитель — 1, знаменатель — 3 .
Таким образом,
12 умножить на 5 умножить на дробь, числитель — 1, знаменатель — 3 =20.
ответ: 20.
Объяснение:
Площадь параллелограмма равна произведению сторон на синус угла между ними. Найдем синус угла. В прямоугольном треугольнике тангенс определяется как отношение противолежащего катета к прилежащему. Имеем:
тангенс \alpha= дробь, числитель — a, знаменатель — b = дробь, числитель — корень из { 2}, знаменатель — 4 .
Таким образом, a=x корень из { 2}, b=4x, где x — число.
По теореме Пифагора гипотенуза этого прямоугольного треугольника равна:
c= корень из { 2x в степени 2 плюс 16x в степени 2 }=3x корень из { 2}.
.
В прямоугольном треугольнике синус определяется как отношение противолежащего катета к гипотенузе. Имеем:
синус \alpha= дробь, числитель — a, знаменатель — c = дробь, числитель — x корень из { 2}, знаменатель — 3x корень из { 2 }= дробь, числитель — 1, знаменатель — 3 .
Таким образом,
12 умножить на 5 умножить на дробь, числитель — 1, знаменатель — 3 =20.
ответ: 20.
Объяснение:
Прямоугольник АВСD
BE = EF = FC
AG = GD
-------------------------
-------------------------
Пусть длинные стороны прямоугольника равны а, а короткие - b.
ВС = AD = a
FD = СВ = b
Тогда площадь прямоугольника
ΔBEH ~ ΔDGH по двум углам (∠BEH = ∠DHG - вертикальные углы; ∠HBE = ∠HDG -внутренние накрест лежащие углы при ВС║AD и секущей BD)
Из подобия этих треугольников следует пропорциональность сторон BE = a/3 и DG = a/2, откуда , что коэффициент подобия
k = a/3 : a/2 = 2/3
Высоты этих треугольников также относятся как 2:3, и высота ΔDGH равна 3b/5. Площадь ΔDGH равна
ΔBFK ~ ΔDGK по двум углам (∠BKFH = ∠DKG - вертикальные углы; ∠KBF = ∠KDG -внутренние накрест лежащие углы при ВС║AD и секущей BD) .
Из подобия этих треугольников следует пропорциональность сторон BF = 2a/3 и DG = a/2, откуда коэффициент подобия
k = 2/3 : a/2 = 4/3
Высоты этих треугольников также относятся как 4:3, и высота ΔDGK равна 3b/7. Площадь ΔDGK равна
Площадь ΔGHK