78Б В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60⁰. Найдите боковое ребро пирамиды.
Дано: АВСД - ромб угол А = 30 градусов ВМ и ВК - перпендикуляры ВМ = 5 см Найти : Р = АВСД = ? Решение : У нас образовался прямоугольный треугольник - ВАМ угол А = 30 градусов угол М = 90 градусов ( т. к. проведен перпендикуляр ВМ ) отсюда следует, что угол В = 60 градусов (так как сумма углов треугольника равна 180 градусов 180 - 120 = 60 градусов ) , а ВМ = 5 см ( по условию) Вм катет, лежащий против угла 30 градусов ( мы знаем теорему , что угол лежащий против угла 30 градусов равен половине гипотенузы ) А гипотенузой является сторона АВ значит она равна 10 см ( 5см + 5см = 10 см) теперь мы находи Р = ромба = ? Р = АВСД = 10 см * 4 ( стороны ) = 40 см ( так как все стороны ромба равны мы умножаем на четыре) , отсюда следует что Р = АВСД = 40 см.
Две пересекающиеся прямые ОР и OF задают плоскость, которая пересекает параллельные плоскости α и β по параллельным прямым. Значит, F₁P₁ и F₂P₂ параллельны и лежат в одной плоскости с точкой О.
Рассмотрим треугольники ОF₁P₁ и ОF₂P₂: угол при вершине О - общий; ∠ОF₁P₁ = ∠ОF₂P₂ как соответственные при пересечении параллельных прямых F₁P₁ и F₂P₂ секущей OF, значит ΔОF₁P₁ подобен ΔОF₂P₂ по двум углам. ОP₁ : ОР₂ = F₁P₁ : F₂P₂ ОP₁ = х, ОP₂ = х + 4 x : (x + 4) = 3 : 5 5x = 3(x + 4) 5x = 3x + 12 2x = 12 x = 6 ОP₁ = 6 см
АВСД - ромб
угол А = 30 градусов
ВМ и ВК - перпендикуляры
ВМ = 5 см
Найти :
Р = АВСД = ?
Решение :
У нас образовался прямоугольный треугольник - ВАМ
угол А = 30 градусов
угол М = 90 градусов ( т. к. проведен перпендикуляр ВМ ) отсюда следует, что угол В = 60 градусов (так как сумма углов треугольника равна 180 градусов 180 - 120 = 60 градусов ) ,
а ВМ = 5 см ( по условию)
Вм катет, лежащий против угла 30 градусов ( мы знаем теорему , что угол лежащий против угла 30 градусов равен половине гипотенузы )
А гипотенузой является сторона АВ значит она равна 10 см ( 5см + 5см = 10 см)
теперь мы находи Р = ромба = ?
Р = АВСД = 10 см * 4 ( стороны ) = 40 см ( так как все стороны ромба равны мы умножаем на четыре) ,
отсюда следует что Р = АВСД = 40 см.
Значит, F₁P₁ и F₂P₂ параллельны и лежат в одной плоскости с точкой О.
Рассмотрим треугольники ОF₁P₁ и ОF₂P₂:
угол при вершине О - общий;
∠ОF₁P₁ = ∠ОF₂P₂ как соответственные при пересечении параллельных прямых F₁P₁ и F₂P₂ секущей OF, значит
ΔОF₁P₁ подобен ΔОF₂P₂ по двум углам.
ОP₁ : ОР₂ = F₁P₁ : F₂P₂
ОP₁ = х, ОP₂ = х + 4
x : (x + 4) = 3 : 5
5x = 3(x + 4)
5x = 3x + 12
2x = 12
x = 6
ОP₁ = 6 см