В своем письме С. Маршак размышляет о том, что грамматику изучать необходимо и полезно. Этот текст можно назвать рассуждением. Автор раскрывает тезис: «Грамматику изучать необходимо и полезно». Он приводит следующие аргументы: «Тот, кто не изучал грамматики, не знает законов языка. Он говорит более или менее правильно. Но такого человека легко сбить с толку. Он может незаметно для самого себя испортить свой язык, усвоить неправильные обороты речи. Ведь он не изучал правил русского языка и не знает, что правильно и что неправильно». Последний абзац в тексте является выводом. Убедительное доказательство содержится в предпоследнем абзаце: «Склонять, спрягать, соединять отдельные слова в предложения такой человек научился бессознательно, как научился ходить. Этого знания языка ему хватает для выражения самых простых мыслей. Но когда ему понадобится выразить мысль сложную, требующую пояснений и дополнений, − вот тогда ему трудно придётся, если он не знает законов языка».
В своем письме С. Маршак размышляет о том, что грамматику изучать необходимо и полезно. Этот текст можно назвать рассуждением. Автор раскрывает тезис: «Грамматику изучать необходимо и полезно». Он приводит следующие аргументы: «Тот, кто не изучал грамматики, не знает законов языка. Он говорит более или менее правильно. Но такого человека легко сбить с толку. Он может незаметно для самого себя испортить свой язык, усвоить неправильные обороты речи. Ведь он не изучал правил русского языка и не знает, что правильно и что неправильно». Последний абзац в тексте является выводом. Убедительное доказательство содержится в предпоследнем абзаце: «Склонять, спрягать, соединять отдельные слова в предложения такой человек научился бессознательно, как научился ходить. Этого знания языка ему хватает для выражения самых простых мыслей. Но когда ему понадобится выразить мысль сложную, требующую пояснений и дополнений, − вот тогда ему трудно придётся, если он не знает законов языка».
1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение: