Это как бы достаточно классическая задача. А такая пирамида называется тетраэдр. Правильная пирамида. Очень правильная.
Назови вершины банальными буквами ABCD. Далее надо заметить, что отрезок, являющийся расстоянием между двумя противоположными рёбрами (длину которого мы ищем, назовём его банальной букой х), лежит в плоскости, содержащей одно из рёбер, и точку середины противоположного ребра. Точнее даже, этот самый отрезок является высотой равнобедренного треугольника, образованного одним из рёбер, и высотами двух соседних граней. Чему равна высота в равностороннем треугольнике со стороной а? Стандартная формула: а * корень(3) / 2. Итак, что мы имеем: необходимо найти высоту равнобедренного треугольника, в основании которого лежит ребро а, а обе боковые стороны равны, как только что нашли, а * корень(3) / 2. Теорема Пифагора нам тут имеем: х = корень ( (а*корень(3)/2 ) в квадрате - (1/2а) в квадрате); х = а * корень ( 2) / 2.
Ок, я попробую)
17
CAO = OBD по 2 сторонам и углу между ними
18
ECB = BCA по 3 сторонам
DCA = CAB по 2 углам и стороне между ними
19 (А я уже устала)
SQ = TR т.к. PS = PT
тоже самое с углами PSM=QSM и PTM=RTM
ТА, И СТОРОНЫ SM=MT и вот по 2 сторонам и углу меду ними
20
(*Я устала писать названия треуг, поэтому где очевидно, буду просто писать просто как они равны*)
По двум сторонам и углу меду ними(одной из сторон считается вот эта палка по середине(Да я физмат))
21
По двум сторонам и углу меду ними
22(так дело пошло быстрее)
По двум углам и стороне меду ними (Если углы снаружи равны, то внутри они тоже будут равны)
23
По двум сторонам и углу меду ними (опять эта палка)
24
По двум сторонам и углу меду ними
Назови вершины банальными буквами ABCD.
Далее надо заметить, что отрезок, являющийся расстоянием между двумя противоположными рёбрами (длину которого мы ищем, назовём его банальной букой х), лежит в плоскости, содержащей одно из рёбер, и точку середины противоположного ребра. Точнее даже, этот самый отрезок является высотой равнобедренного треугольника, образованного одним из рёбер, и высотами двух соседних граней.
Чему равна высота в равностороннем треугольнике со стороной а? Стандартная формула: а * корень(3) / 2.
Итак, что мы имеем: необходимо найти высоту равнобедренного треугольника, в основании которого лежит ребро а, а обе боковые стороны равны, как только что нашли, а * корень(3) / 2.
Теорема Пифагора нам тут имеем:
х = корень ( (а*корень(3)/2 ) в квадрате - (1/2а) в квадрате);
х = а * корень ( 2) / 2.
Такой получается ответ.