№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам.
№2
Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН
КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град.
ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2
2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
Построим сечение плоскостью через точки PMB
X - пересечение BP и AC
K - пересечение XM и DC
KMB - сечение
PT||BM, QT - искомый отрезок
В плоскости ABC:
проведем NY||BX
CY/YX =CN/NB =1
AY/YX =AN/NP =6/1
CY=YX=x, AY=6x, AC=5x => AC/CX =5/2
проведем NZ||AX
XZ/ZB =CN/NB =1
XZ/ZP =AN/NP =6/1
XZ=ZB=6x, ZP=x, PB=5x => XP/PB =7/5
В плоскости ADC:
AC/CX *XK/KM *MD/DA =1 (т Менелая) => 5/2 *XK/KM *1/2 =1 => XK/KM =4/5
В плоскости сечения KMB:
XT/TM =XP/PB =7/5 => TM/XM =5/12
XK/KM =4/5 => KM/XM =5/9
TM/KM =5/12 *9/5 =3/4 => KT/TM =1/4
QT/BM =KT/KM =1/4 => QT =1/4 a