1) прямоугольник - это параллелограмм ,у которого все углы прямые а)в прямоугольнике диагонали равны прямоугольник имеет все свойства параллелограмма в)каждая диагональ разбивает прямоуг. на 2 равных треуг. г) прямоуг . имеет 2 оси симметрии ромб -это параллелограмм с равными сторонами (все стороны равны) а) диагонали ромба взаимно перпендикулярны и делят углы ромба пополам б)каждая диагональ ромба есть его ось симметрии квадрат -это параллелограмм ,у которого все стороны равны и все углы прямые квадрату принадлежат все свойства параллелограмма, ромба и прямоугольника
Вот с учебника переписал Через любую точку пространства, не лежащую на данной прямой проходит прямая, параллельная данной и притом только одна. Признак параллельности прямой и плоскости Если прямая, не лежащая в плоскости, параллельна какой-нибудь прямой, лежащей в плоскости, то она параллельна и самой плоскости •Доказательство Метод «от обратного» Пусть а не параллельна α. Тогда… а содержится в α. или а пересекает α. По лемме, так как а ║ b, то b тоже пересекает α. Это противоречит условию теоремы. Значит, наше предположение неверно. Следовательно а ║ α •Если одна из двух параллельных прямых параллельна плоскости, то другая прямая… •либо также параллельна данной плоскости, •либо лежит в этой плоскости.
а)в прямоугольнике диагонали равны
прямоугольник имеет все свойства параллелограмма
в)каждая диагональ разбивает прямоуг. на 2 равных треуг.
г) прямоуг . имеет 2 оси симметрии
ромб -это параллелограмм с равными сторонами (все стороны равны)
а) диагонали ромба взаимно перпендикулярны и делят углы ромба пополам
б)каждая диагональ ромба есть его ось симметрии
квадрат -это параллелограмм ,у которого все стороны равны и все углы прямые
квадрату принадлежат все свойства параллелограмма, ромба и прямоугольника
Признак параллельности прямой и плоскости
Если прямая, не лежащая в плоскости, параллельна какой-нибудь прямой, лежащей в плоскости, то она параллельна и самой плоскости
•Доказательство Метод «от обратного» Пусть а не параллельна α. Тогда… а содержится в α. или а пересекает α. По лемме, так как а ║ b, то b тоже пересекает α. Это противоречит условию теоремы. Значит, наше предположение неверно. Следовательно а ║ α
•Если одна из двух параллельных прямых параллельна плоскости, то другая прямая… •либо также параллельна данной плоскости, •либо лежит в этой плоскости.