Объяснение:
12√1326 cм²
Объяснение: Применяем метод удвоения медианы.
Дан ΔКМТ, КМ=25 см, КТ=35 см, КО - медиана, КО=21 см. Найти S(КМТ).
На продолжении медианы КО за точку О отложим отрезок, равный КО.
Рассмотрим четырёхугольник КМРТ.
КM=РТ; РM=ТК
(Диагонали четырёхугольника делятся точкой пересечения О пополам). Четырёхугольник КМРТ – параллелограмм.
Рассмотрим ΔКМР. КМ=25 см, МР=35 см, КР=42 см.
По формуле Герона S(КМР)=√(р(р-а)(р-b)(p-c))=√(51*26*16*9)=12√1326 cм.²
S(КМРТ)=2SКМР=24√1326 cм²;
S(КМТ)=1/2 S(КМРТ)=12√1326 cм²;
Задача решается через векторы.
Построим вектор ;
Середина D отрезка AB может быть найдена откладыванием половины вектора от точки A
;
Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;
От точки D нужно отложить вектор высоты в обе возможные стороны
Вектор высоты перпендикулярен вектору основания , а значит его проекции накрест-пропорциональны с противоположным знаком:
(I) , что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: (II) ;
Таким образом вектор пропорционален вектору , поскольку для вектора выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора ;
Вектор имеет длину ;
Аналогично, AB = 10
При этом, поскольу треугольник равносторонний, то значит его высота составляет , т.к ;
Значит , а стало быть ;
В итоге .
Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:
ОТВЕТ:
/// примечание: ;
/// примечание: .
Объяснение:
12√1326 cм²
Объяснение: Применяем метод удвоения медианы.
Дан ΔКМТ, КМ=25 см, КТ=35 см, КО - медиана, КО=21 см. Найти S(КМТ).
На продолжении медианы КО за точку О отложим отрезок, равный КО.
Рассмотрим четырёхугольник КМРТ.
КM=РТ; РM=ТК
(Диагонали четырёхугольника делятся точкой пересечения О пополам). Четырёхугольник КМРТ – параллелограмм.
Рассмотрим ΔКМР. КМ=25 см, МР=35 см, КР=42 см.
По формуле Герона S(КМР)=√(р(р-а)(р-b)(p-c))=√(51*26*16*9)=12√1326 cм.²
S(КМРТ)=2SКМР=24√1326 cм²;
S(КМТ)=1/2 S(КМРТ)=12√1326 cм²;