1.Треугольник ABD = 1. Угол ВАD = CAD
2. BDA=CDA
треугольнику ADC
3.AD - общая сторона.
Второй признак равенства
треугольников
2.
Углы 1 и 2 вертикальные, значит они
равны, следовательно треугольники, по двум углам и стороне, равны. Исходя из этого, СD делиться попалам в точки О
3.
<АСО=<1 как вертикальные углы.
<BDO=<2 как вертикальные углы. Но
<1=<2, значит
<ACO=<BDO.
<AOC=<BOD как вертикальные углы.
Значит, треугольники АСО и BDO
равны по второму признаку: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней
углам другого треугольника: - ОС=ОD по условию;
- <ACO=<BDO как доказано выше;
.<AOC=<BOD как доказано выше. У равных треугольников АСО и BDO равны соответственные углы А и В.
4.
Точка D и C а так же О, лежат в плоскости.
РАссмотрим диагонал DB. B пренадлежит DO, а DO лежит в плоскости(так как две точки лежат в плоскости) => B лежит в плоскости.
Рассмотрим диагонал CA. A пренадлежит СO, а СО лежит в плоскости(так как две точки С и О лежат в плоскости) следовательно А лежит также в плоскости.
следовательно все вершины квадрата находятся в одной плоскости
это на основе теоремы: ЕСЛИ ДВЕ ТОЧКИ ПРЯМОЙ ЛЕЖАТ В ПЛОСКОСТИ,ТО ВСЕ ТОЧКИ ПРЯМОЙ ЛЕЖАТ В ЭТОЙ ПЛОСКОСТИ. вроде так звучит, удачи вам.
1.Треугольник ABD = 1. Угол ВАD = CAD
2. BDA=CDA
треугольнику ADC
3.AD - общая сторона.
Второй признак равенства
треугольников
2.
Углы 1 и 2 вертикальные, значит они
равны, следовательно треугольники, по двум углам и стороне, равны. Исходя из этого, СD делиться попалам в точки О
3.
<АСО=<1 как вертикальные углы.
<BDO=<2 как вертикальные углы. Но
<1=<2, значит
<ACO=<BDO.
<AOC=<BOD как вертикальные углы.
Значит, треугольники АСО и BDO
равны по второму признаку: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней
углам другого треугольника: - ОС=ОD по условию;
- <ACO=<BDO как доказано выше;
.<AOC=<BOD как доказано выше. У равных треугольников АСО и BDO равны соответственные углы А и В.
4.
Точка D и C а так же О, лежат в плоскости.
РАссмотрим диагонал DB. B пренадлежит DO, а DO лежит в плоскости(так как две точки лежат в плоскости) => B лежит в плоскости.
Рассмотрим диагонал CA. A пренадлежит СO, а СО лежит в плоскости(так как две точки С и О лежат в плоскости) следовательно А лежит также в плоскости.
следовательно все вершины квадрата находятся в одной плоскости
это на основе теоремы: ЕСЛИ ДВЕ ТОЧКИ ПРЯМОЙ ЛЕЖАТ В ПЛОСКОСТИ,ТО ВСЕ ТОЧКИ ПРЯМОЙ ЛЕЖАТ В ЭТОЙ ПЛОСКОСТИ. вроде так звучит, удачи вам.