Найти: стороны треугольника,образованные его средними линиями
Предположим,что у нас есть треугольник ABC, у которого сторона AB равна 6 см.,BC 9 см., и AC 13 см. На средине стороны AB поставим точку D, на средине BC - точку E, и на средине AC - точку F. Соединив эти точки, мы получим треугольник DEF, образованный срединными линиями треугольника ABC. Согласно теореме о средней линии треугольника, средняя линия треугольника параллельна третьей стороне и равна ее половине. Тогда DE =1/2 AC = 13/2 = 6,5 см, EF=1/2AB=6/2=3, DF=1/2BC=9/2=4,5
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Дано: Треугольник со сторонами 6, 9 и 13 см.
Найти: стороны треугольника,образованные его средними линиями
Предположим,что у нас есть треугольник ABC, у которого сторона AB равна 6 см.,BC 9 см., и AC 13 см. На средине стороны AB поставим точку D, на средине BC - точку E, и на средине AC - точку F. Соединив эти точки, мы получим треугольник DEF, образованный срединными линиями треугольника ABC. Согласно теореме о средней линии треугольника, средняя линия треугольника параллельна третьей стороне и равна ее половине. Тогда DE =1/2 AC = 13/2 = 6,5 см, EF=1/2AB=6/2=3, DF=1/2BC=9/2=4,5
ответ: 6,5 см, 3 см, 4,5 см.
ответ
ответ дан
ivanproh1
S = 102 см²
Объяснение:
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Площадь ромба равна 4*25,5 = 102см².
Можно через диагонали:
S=(1/2)*D*d = (1/2)*34*6 = 102 см².