Не любая , а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой. Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое: Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой В равностороннем - то же рассуждение для любой стороны. .
Один із кутів отриманих при перетині дорівнює третині суміжних кутів знайдіть їх усіх!
ответ
В даному блозі будемо готуватись до здачі ЗНО,ДПА, розв'язуючи вправи які були на даних іспитах в різних роках.
2. Розв'яжіть нерівність
А. (−∞;−25)
Б. (−∞;−1)
В. (−∞; 25)
Г. (−1;+∞)
Д. (−25;+∞)
Розв'зання: Домножимо ліву і праву частину нерівності на 5:
-x>25
Домноживши праву та ліву частину нерівності на (-1), пам'ятаючи про знак:
x<-25;
Зрозуміло, що x<-25, тобто А.
Відповідь: А. (−∞;−25)
Автор: Евгений Ткаченко на понедельник, апреля 10, 2017 Комментариев нет:
Отправить по электронной почте
Написать об этом в блоге
Опубликовать в Twitter
Опубликовать в Facebook
Поделиться в Pinterest
зно 2017 пробне з математики № 1
В даному блозі будемо готуватись до здачі ЗНО,ДПА, розв'язуючи вправи які були на даних іспитах в різних роках.
1. Різниця двох кутів, отриманих при перетині двох прямих (див. рисунок), дорівнює 120∘. Визначте градусну міру кута α.
А. 30∘
Б. 100∘
В. 120∘
Г. 140∘
Д. 150∘
Розв'зання: При перетині двох прямих, утворюються суміжні та вертикальні кути. Оскільки різниця не 0,то кути не вертикальні, тобто суміжні. Нехай один кут х, тоді інший 120+х. Як відомо, сума суміжних кутів дорівнює 180 градусів. Тому складемо рівняння:
х+х+120=180
2х=180-120
2х=60
х=30, інший кут 120+30=150.
Як видно, з малюнка шуканий кут тупий, тому він деревню 150 градусів.
, а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой.
Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое:
Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой
В равностороннем - то же рассуждение для любой стороны.
.
Один із кутів отриманих при перетині дорівнює третині суміжних кутів знайдіть їх усіх!
ответ
В даному блозі будемо готуватись до здачі ЗНО,ДПА, розв'язуючи вправи які були на даних іспитах в різних роках.
2. Розв'яжіть нерівність
А. (−∞;−25)
Б. (−∞;−1)
В. (−∞; 25)
Г. (−1;+∞)
Д. (−25;+∞)
Розв'зання: Домножимо ліву і праву частину нерівності на 5:
-x>25
Домноживши праву та ліву частину нерівності на (-1), пам'ятаючи про знак:
x<-25;
Зрозуміло, що x<-25, тобто А.
Відповідь: А. (−∞;−25)
Автор: Евгений Ткаченко на понедельник, апреля 10, 2017 Комментариев нет:
Отправить по электронной почте
Написать об этом в блоге
Опубликовать в Twitter
Опубликовать в Facebook
Поделиться в Pinterest
зно 2017 пробне з математики № 1
В даному блозі будемо готуватись до здачі ЗНО,ДПА, розв'язуючи вправи які були на даних іспитах в різних роках.
1. Різниця двох кутів, отриманих при перетині двох прямих (див. рисунок), дорівнює 120∘. Визначте градусну міру кута α.
А. 30∘
Б. 100∘
В. 120∘
Г. 140∘
Д. 150∘
Розв'зання: При перетині двох прямих, утворюються суміжні та вертикальні кути. Оскільки різниця не 0,то кути не вертикальні, тобто суміжні. Нехай один кут х, тоді інший 120+х. Як відомо, сума суміжних кутів дорівнює 180 градусів. Тому складемо рівняння:
х+х+120=180
2х=180-120
2х=60
х=30, інший кут 120+30=150.
Як видно, з малюнка шуканий кут тупий, тому він деревню 150 градусів.
Відповідь: Д. 150∘