ВС║α, плоскость трапеции проходит через ВС и пересекает α по прямой EF, значит EF║BC.
CF : FD = BE : EA = 2 : 3 по теореме Фалеса
Проведем диагональ BD, О - точка пересечения диагонали и EF. ΔЕВО подобен ΔABD по двум углам (угол В общий, ∠ВЕО = ∠ВАD как соответственные при пересечении параллельных прямых EF и AD секущей АВ), ЕО : AD= BE : BA = 2 : 5 EO = AD · 2 / 5 = 7 · 2 / 5 = 14/5 = 2,8 см
ΔDOF подобен ΔDBC по двум углам (угол D общий, ∠DOF = ∠DBC как соответственные при пересечении параллельных прямых EF и ВС секущей BD) OF : BC = DF : DC = 3 : 5 OF = BC · 3 / 5 = 4 · 3 / 5 = 12/5 = 2,4 см EF = EO + OF = 2,8 + 2,4 = 5,2 см
1. Рассматриваем прямоугольный треугольник образованный большей боковой стороной трапеции, высотой опущенной на основание в и частью основания в отсеченной высотой. Часть основания равна 7-4=3 см. Угол В =30° т.к. С=60°. Напротив угла в 30° лежит катет (3 см) равный половине гипотенузы (большая боковая сторона трапеции). ВС=3*2=6 см. 2. Угол при основании 45°. Значит угол при вершине прямоугольного треугольника тоже равен 45° и он равнобедренный. Высота равна длине отсеченной от основания в и равна 15-10=5 см.
CF : FD = BE : EA = 2 : 3 по теореме Фалеса
Проведем диагональ BD, О - точка пересечения диагонали и EF.
ΔЕВО подобен ΔABD по двум углам (угол В общий, ∠ВЕО = ∠ВАD как соответственные при пересечении параллельных прямых EF и AD секущей АВ),
ЕО : AD= BE : BA = 2 : 5
EO = AD · 2 / 5 = 7 · 2 / 5 = 14/5 = 2,8 см
ΔDOF подобен ΔDBC по двум углам (угол D общий, ∠DOF = ∠DBC как соответственные при пересечении параллельных прямых EF и ВС секущей BD)
OF : BC = DF : DC = 3 : 5
OF = BC · 3 / 5 = 4 · 3 / 5 = 12/5 = 2,4 см
EF = EO + OF = 2,8 + 2,4 = 5,2 см
Напротив угла в 30° лежит катет (3 см) равный половине гипотенузы (большая боковая сторона трапеции). ВС=3*2=6 см.
2. Угол при основании 45°. Значит угол при вершине прямоугольного треугольника тоже равен 45° и он равнобедренный. Высота равна длине отсеченной от основания в и равна 15-10=5 см.