abc -прямоугольный треугольник lc = 90° 1) bc = 8, ab = 17, ac = 15; 2) вс=21, ас= 20, ab = 29; 3) ac = 24, ab = 25, cb = 7 найдите синус, косинус, тангенс и котангенс углов а и в.
В правильную 4-х угольную усеченную пирамиду вписан куб так, что одна из граней куба совпадает с меньшим основанием усеченной пирамиды , а противоположная грань куба лежит на большем основании усеченной пирамиды . Ребро куба равно a , сторона меньшего основания усеченной пирамиды в 2 раза меньше стороны большего основания .Найдите площадь боковой поверхности усеченной пирамиды
Объяснение:
Т.к. одна из граней куба совпадает с меньшим основанием усеченной пирамиды, то сторона верхнего основания равна а ⇒ сторона большего основания усеченной пирамиды 2а.
Т.к. усеченная пирамида правильная , то боковые грани равнобедренные трапеции.
S( бок. усеч. пир.)=4S( трапеции)=4*1/2*h*(a+2a). Найдем высоту из прямоугольной трапеции ОО₁Р₁Р .
Точка О₁-точка пересечения диагоналей квадрата, поэтому О₁Р₁= Пусть Р₁К⊥ОР, тогда КР=а- =
Скалярным произведением векторов a(x1;y1;z1) и b(x2;y2;z2), заданных своими координатам, находится по формуле:
Скалярное произведение векторов
Зная модули векторов и угол между ними, скалярное произведение можно найти по формуле:
Условие перпендикулярности векторов a(x1;y1;z1) и b(x2;y2;z2) имеет вид:
x1x2 + y1y2 + z1z2 = 0
Решение онлайн
Видеоинструкция
ИНСТРУКЦИЯ. Заполните координаты векторов и нажмите кнопку Решение. При этом векторы могут быть заданы на плоскости (две координаты) и в пространстве (три координаты).
Задание. Найти скалярное произведение векторов
Заданы
две координаты вектора
три координаты вектора
a = (
0
;
0
;
) и b = (
0
;
0
;
)
Решение
ПРИМЕР. Найти скалярное произведение векторов a = (4; -3; 1) и b = (5; -2; -3).
Решение. По формуле находим a·b = 4·5 + (-3)·(-2) + 1·(-3) = 23. Поскольку 23≠0, то данные вектора не перпендикулярны.
В правильную 4-х угольную усеченную пирамиду вписан куб так, что одна из граней куба совпадает с меньшим основанием усеченной пирамиды , а противоположная грань куба лежит на большем основании усеченной пирамиды . Ребро куба равно a , сторона меньшего основания усеченной пирамиды в 2 раза меньше стороны большего основания .Найдите площадь боковой поверхности усеченной пирамиды
Объяснение:
Т.к. одна из граней куба совпадает с меньшим основанием усеченной пирамиды, то сторона верхнего основания равна а ⇒ сторона большего основания усеченной пирамиды 2а.
Т.к. усеченная пирамида правильная , то боковые грани равнобедренные трапеции.
S( бок. усеч. пир.)=4S( трапеции)=4*1/2*h*(a+2a). Найдем высоту из прямоугольной трапеции ОО₁Р₁Р .
Точка О₁-точка пересечения диагоналей квадрата, поэтому О₁Р₁= Пусть Р₁К⊥ОР, тогда КР=а- =
Из ΔКРР₁ по т. Пифагора Р₁К=√(а²+( )²)=а√ = .
S( бок. усеч. пир.)=4* * *(a+2a)=3a²√5 (ед²).
Объяснение:
Скалярное произведение векторов
Скалярным произведением векторов a(x1;y1;z1) и b(x2;y2;z2), заданных своими координатам, находится по формуле:
Скалярное произведение векторов
Зная модули векторов и угол между ними, скалярное произведение можно найти по формуле:
Условие перпендикулярности векторов a(x1;y1;z1) и b(x2;y2;z2) имеет вид:
x1x2 + y1y2 + z1z2 = 0
Решение онлайн
Видеоинструкция
ИНСТРУКЦИЯ. Заполните координаты векторов и нажмите кнопку Решение. При этом векторы могут быть заданы на плоскости (две координаты) и в пространстве (три координаты).
Задание. Найти скалярное произведение векторов
Заданы
две координаты вектора
три координаты вектора
a = (
0
;
0
;
) и b = (
0
;
0
;
)
Решение
ПРИМЕР. Найти скалярное произведение векторов a = (4; -3; 1) и b = (5; -2; -3).
Решение. По формуле находим a·b = 4·5 + (-3)·(-2) + 1·(-3) = 23. Поскольку 23≠0, то данные вектора не перпендикулярны.