АВСД - равнобедренная трапеция, ВС и АД ее основания. Основание ВС = АВ, угол АСД = 90 градусов. Так как АВ = ВС, то тр-ник АВС - равнобедренный, углы ВАС = ВСА как углы при основании. У трапеции основания папаллельны, лиагональ АС - является секущей, значит углы САД = ВСА как накрест лежашие. Так как углы ВАС = ВСА и САД = ВСА, то ВАС = ВСА = САД. У равнобедренной трапеции углы при основаниях также равны. Сумма углов трапеции равна 360 градусов. Пусть угол ВАС = х, тогда угол ВАД = 2х. (2х + 90 + х) * 2 = 360 6х + 180 = 360 6х = 180 х = 30 Углы А = Д = 30 * 2 = 60 Углы В = С = 90 + 30 = 120.
Трапеция — четырехугольник, у которого две стороны параллельны, а две стороны не параллельны. Параллельные стороны называются основаниями трапеции, две другие — боковыми сторонами.

Высота трапеции — расстояние между прямыми, на которых лежат основания трапеции, любой общий перпендикуляр этих прямых.
Средняя линия трапеции — отрезок, соединяющий середины боковых сторон.
Свойство трапеции:
Если в трапецию вписана окружность, то сумма оснований равна сумме боковых сторон: , а средняя линия — полусумме боковых сторон: .
Равнобедренная трапеция — трапеция, у которой боковые стороны равны . Тогда равны диагонали  и углы при основании , .
Из всех трапеций только около равнобедренной трапеции можно описать окружность, так как окружность можно описать около четырехугольника, только если сумма противоположных углов равна .
В равнобедренной трапеции расстояние от вершины одного основания, до проекции противоположной вершины на прямую, содержащую это основание равно средней линии.
Прямоугольная трапеция — трапеция, у которой один из углов при основании равен .
Так как АВ = ВС, то тр-ник АВС - равнобедренный, углы ВАС = ВСА как углы при основании.
У трапеции основания папаллельны, лиагональ АС - является секущей, значит углы САД = ВСА как накрест лежашие.
Так как углы ВАС = ВСА и САД = ВСА, то ВАС = ВСА = САД.
У равнобедренной трапеции углы при основаниях также равны.
Сумма углов трапеции равна 360 градусов.
Пусть угол ВАС = х, тогда угол ВАД = 2х.
(2х + 90 + х) * 2 = 360
6х + 180 = 360
6х = 180
х = 30
Углы А = Д = 30 * 2 = 60
Углы В = С = 90 + 30 = 120.
Трапеция — четырехугольник, у которого две стороны параллельны, а две стороны не параллельны. Параллельные стороны называются основаниями трапеции, две другие — боковыми сторонами.

Высота трапеции — расстояние между прямыми, на которых лежат основания трапеции, любой общий перпендикуляр этих прямых.
Средняя линия трапеции — отрезок, соединяющий середины боковых сторон.
Свойство трапеции:
Если в трапецию вписана окружность, то сумма оснований равна сумме боковых сторон: , а средняя линия — полусумме боковых сторон: .
Равнобедренная трапеция — трапеция, у которой боковые стороны равны . Тогда равны диагонали  и углы при основании , .
Из всех трапеций только около равнобедренной трапеции можно описать окружность, так как окружность можно описать около четырехугольника, только если сумма противоположных углов равна .
В равнобедренной трапеции расстояние от вершины одного основания, до проекции противоположной вершины на прямую, содержащую это основание равно средней линии.
Прямоугольная трапеция — трапеция, у которой один из углов при основании равен .