1) Если диагональ основания пирамиды (это квадрат) равна 8√2, то сторона a равна 8√2*cos 45° = 8√2*(√2/2) = 8 см. So = a² = 8² = 64 см². Высота Н пирамиды равна √(А²-(а/2)²) = √(5²-(8/2)²) = √(25-16) = √9 = 3 см. Тогда V = (1/3)So*H = (1/3)64*3 = 64 см³.
2) Примем диаметр основания цилиндра за Д, а высоту за Н. Н = Д/(tg(α/2)). Осевое сечение цилиндра - прямоугольник.Его периметр р равен: р = 2(Н+Д) = 2((Д/(tg(α/2)))+Д). Отсюда находим Д = р*(tg(α/2))/(2(1+(tg(α/2)))). Объём цилиндра V = So*H = (πD²/4)*H. Подставим значения Д и Н: =
X2=9/2
X2=4.5
X= КОРЕНЬ ИЗ 4.5 ПРИМЕРНО РАВНО 2.12 -2X2+11X-15=0 2X2-11X-15=0 D=121-120=1 X1.=11-1/4=2.5 X2.=11+1/4=3 -0.36-X2=0 -X2=0.36 -X= КОРЕНЬ ИЗ 0.36 X=-0.6 6X+64=-X2 X2+16X+64=0 D=256-256=0 X=-16/2=-8 13X+3X2=-14 3X2+13X+14=0 D=169-168=1 X1.=-13-11/6=-2 1/3 X2.=-13+1/6=-2
So = a² = 8² = 64 см².
Высота Н пирамиды равна √(А²-(а/2)²) = √(5²-(8/2)²) = √(25-16) = √9 = 3 см.
Тогда V = (1/3)So*H = (1/3)64*3 = 64 см³.
2) Примем диаметр основания цилиндра за Д, а высоту за Н.
Н = Д/(tg(α/2)).
Осевое сечение цилиндра - прямоугольник.Его периметр р равен:
р = 2(Н+Д) = 2((Д/(tg(α/2)))+Д).
Отсюда находим Д = р*(tg(α/2))/(2(1+(tg(α/2)))).
Объём цилиндра V = So*H = (πD²/4)*H.
Подставим значения Д и Н:
=